-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcf.py
67 lines (54 loc) · 2.9 KB
/
cf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import sys, random
from project import load_data, show_data, rmse, create_matrix, latent_factor,\
predict_from_matrix, process_problem_name, process_step_name, plotroc
def data_key(data):
student = data[1].upper()
problem_hierarchy = data[2].upper()
problem_name = data[3].upper()
step_name = data[5].upper()
return student, problem_hierarchy, problem_name, step_name
def get_avg_rankings(ranking):
avg_ranking = { i: float(sum(r))/float(len(r)) for i, r in ranking.items() }
overall_ranking = sum([ ar for i,ar in avg_ranking.items()]) / len(avg_ranking)
return avg_ranking, overall_ranking
def get_bias_with_key(avg_data, key):
return avg_data[0][key] - avg_data[1] if key in avg_data[0] else 0.0
def training(data, learnrate, regular, numofstep):
students = {}
problems = {}
testing_sample = []
N = len(data)
print "Num Of Lines to train: ", N
for i in range(1,N):
student, hierarchy, problem_name, step_name = data_key(data[i])
is_first_correct = float(data[i][13])
item_key = process_step_name(step_name)
students.setdefault(student, []).append(is_first_correct)
problems.setdefault(item_key, []).append(is_first_correct)
testing_sample.append((student, item_key, is_first_correct))
matrix = create_matrix(testing_sample, students, problems)
matrix = latent_factor(testing_sample, matrix, students, problems, learnrate, regular, numofstep)
print "Training Done..."
return matrix, students, problems, testing_sample
def main(arg):
dataset = arg[1] #'algebra_2005_2006'
training_data, testing_data, testing_result_data = load_data(dataset)
#shuffle the training data
#training_data = random.shuffle(training_data)
learnrate = 0.01
regular = 0.02
numofstep = 30
matrix, students, problems, testing_sample = training(training_data, learnrate, regular, numofstep)
predict_result = predict_from_matrix(matrix, students, problems,[ (data[0].upper(), data[1].upper()) for data in testing_sample])
training_error = rmse(predict_result, [float(i[2]) for i in testing_sample])
predict_test_result = predict_from_matrix(matrix, students, problems,[ (data[1].upper(), process_step_name(data[5].upper())) for data in testing_data[1:]])
predict_error = rmse(predict_test_result, [float(i[13]) for i in testing_result_data[1:]])
print "first 50 items of prediction before rounding: ",[float(i) for i in predict_test_result[:50]]
print "first 50 items of prediction: ",[int(round(float(i))) for i in predict_test_result[:50]]
print "first 50 items of test GT: ", [int(i[13]) for i in testing_result_data[1:50]]
print '|', dataset, '|', training_error, '|', predict_error ,'|'
plotroc([float(i[2]) for i in testing_sample], predict_result,\
[float(i[13]) for i in testing_result_data[1:]], predict_test_result)
return
if __name__ == "__main__":
main(sys.argv)