-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdk.py
524 lines (465 loc) · 10.5 KB
/
dk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# A vertex-centric representation for adaptive diamond-kite meshes
#
# usage: python R INPUT -- all arguments optional
from __future__ import print_function
from sys import argv
from random import random
# depth of refinement
R= int(argv[1]) if len(argv)>1 else 6
# file containing initial mesh
INPUT= argv[2] if len(argv)>2 else "-"
# size of base mesh
N=6
# make array
def array(n):
return list(range(n))
# normalize 3-adic lattice coordinates [a,b,m]=(a+b*w^2)/(3^m)
def normalize(a,b,m):
a,b=int(a),int(b)
while m>0 and a%3==0 and b%3==0:
a=a/3
b=b/3
m=m-1
return [a,b,m]
# add 3-adic lattice points with scaling
def add(v1,v2,n):
a1,b1,m1=v1
a2,b2,m2=v2
m2=m2+n//2
d1=3**m1
d2=3**m2
a=d2*a1+d1*a2
b=d2*b1+d1*b2
m=m1+m2
return normalize(a,b,m)
# multiply 3-adic lattice points
# PolynomialRemainder[(a_1 + b_1 z)(a_2 + b_2 z),z^2-z+1,z]
# z (a_2 b_1 + a_1 b_2 + b_2 b_1) + a_1 a_2 - b_1 b_2
def multiply(v1,v2):
a1,b1,m1=v1
a2,b2,m2=v2
a=a1*a2-b1*b2
b=a2*b1+a1*b2+b2*b1
m=m1+m2
return normalize(a,b,m)
# rotate star
def rotate(a,z):
n=len(a)
b=array(n)
for i in range(n):
b[i]=multiply(a[i],z)
return b
# 3-adic lattice coordinates of basic directions; odd directions are shorter
W=array(12)
W[0]=[1,0,0] # 1
W[1]=[1,1,1] # (1+w^2)/3
W[2]=[0,1,0] # w^2
for i in range(3,12):
W[i]=multiply(W[i-2],W[2])
# stars
STAR=array(6+1)
for d in range(3,6+1):
STAR[d]=array(12)
# basic stars from Eppstein (2014) fig 4
STAR[3][0]=[W[0],W[4],W[8]]
STAR[4][0]=[W[0],W[4],W[7],W[9]]
STAR[5][0]=[W[0],W[3],W[5],W[7],W[9]]
STAR[6][0]=[W[0],W[2],W[4],W[6],W[8],W[10]]
# rotate basic stars
for d in range(3,6+1):
STAR[d][1]=rotate(STAR[d][0],W[1])
for k in range(2,12):
STAR[d][k]=rotate(STAR[d][k-2],W[2])
# opposites
OPP=array(6+1)
for d in range(3,6+1):
OPP[d]=array(12)
OPP[d][0]=array(2*d)
# basic opposites for degree 3
OPP[3][0][0]=[0,1,0]
OPP[3][0][1]=[0,2,0]
OPP[3][0][2]=multiply(OPP[3][0][0],W[4])
OPP[3][0][3]=multiply(OPP[3][0][1],W[4])
OPP[3][0][4]=multiply(OPP[3][0][2],W[4])
OPP[3][0][5]=multiply(OPP[3][0][3],W[4])
# basic opposites for degree 4
OPP[4][0][0]=[0,1,0]
OPP[4][0][1]=[0,2,0]
OPP[4][0][2]=multiply([0,1,0],W[4])
OPP[4][0][3]=[0,0,0]
OPP[4][0][4]=multiply([2,2,1],W[7])
OPP[4][0][5]=multiply([1,1,0],W[7])
OPP[4][0][6]=[1,-1,0]
OPP[4][0][7]=[0,0,0]
# basic opposites for degree 5
OPP[5][0][0]=[0,1,0]
OPP[5][0][1]=[0,0,0]
OPP[5][0][2]=multiply([2,2,1],W[3])
OPP[5][0][3]=multiply([1,1,0],W[3])
OPP[5][0][4]=multiply([2,2,1],W[5])
OPP[5][0][5]=multiply([1,1,0],W[5])
OPP[5][0][6]=multiply([2,2,1],W[7])
OPP[5][0][7]=multiply([1,1,0],W[7])
OPP[5][0][8]=[1,-1,0]
OPP[5][0][9]=[0,0,0]
# basic opposites for degree 6
OPP[6][0][0]=[2,2,1]
OPP[6][0][1]=[1,1,0]
for i in range(2,2*6):
OPP[6][0][i]=multiply(OPP[6][0][i-2],W[2])
# rotate basic opposites
for d in range(3,6+1):
OPP[d][1]=rotate(OPP[d][0],W[1])
for k in range(2,12):
OPP[d][k]=rotate(OPP[d][k-2],W[2])
# Cartesian coordinates
w2=complex(0.5,0.866025403784438646763723170752936183471402626905190314027)
# vertex cloud
V={}
# topological data
U={}
E={}
F={}
nU=0
# use dot notation for dict -- https://stackoverflow.com/a/74214556/107090
class DOTTED(dict):
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
# add vertex to cloud
def addvertex(a,b,m,d,k,n):
global nU
a,b,m=normalize(a,b,m)
if not (a,b,m) in V:
z=(a+b*w2)/(3**m)
t=(a,b,m)
U[nU]=V[a,b,m]=DOTTED({'t':t,'d':d,'k':k,'n':n,'z':z,'w':False,'id':nU})
nU=nU+1
return V[a,b,m]
# add vertex in base mesh
def basevertex(w,d,k):
a,b=w.real,w.imag
v=addvertex(a,b,0,d,k,0)
v.w=w
# base mesh: hexagonal grid
def basemesh(N):
# use complex numbers for easy addition
for i in range(12):
a,b,m=W[i]
W[i]=complex(a,b)
for i in range(N):
for j in range(N):
c=0+i*(W[2]+W[4])+j*3*W[0]
basevertex(c,3,0)
for k in range(0,12,4):
basevertex(c+W[k],6,0)
for k in range(2,12,4):
basevertex(c+W[k],3,2)
if i<N-1 and j<N-1:
basevertex(c+W[0]+W[2],3,0)
boundary()
# base mesh: mark boundary vertices
def boundary():
for k in V:
v=V[k]
if isboundary(v):
v.d=0
v.k=0
def isboundary(v):
for k in range(0,12,2):
w=v.w+W[k]
a,b=w.real,w.imag
a,b,m=normalize(a,b,0)
if not (a,b,m) in V:
return True
return False
# load mesh from csv file
def loadmesh(filename):
N=0
for line in open(filename):
if N>0:
a,b,m,d,k,n=list(map(int,line.split(",")))
addvertex(a,b,m,d,k,n)
N=N+1
addredundant()
# add vertices absent in file
# vertices of degree 3 that are adjacent to a vertex of degree 6
def addredundant():
for k in range(len(U)):
v=U[k]
if v.d==6:
for i in range(v.d):
a,b,m=adj(v,i)
if not (a,b,m) in V:
k=(6+2*i+v.k)%12
addvertex(a,b,m,3,k,v.n)
# stars
def adda(v,i,A):
w=A[v.d][v.k][i]
return add(v.t,w,v.n)
def adj(v,i):
return adda(v,i,STAR)
def adjacent(v,i):
a,b,m=adj(v,i)
return V[a,b,m]
def star(v):
s=array(v.d)
for i in range(v.d):
s[i]=adjacent(v,i)
return s
def makestar(v):
s=array(v.d)
for i in range(v.d):
a,b,m=adj(v,i)
assert not (a,b,m) in V,(a,b,m)
s[i]=addvertex(a,b,m,0,0,0)
return s
# local subdivision step
def subdivide(v):
assert v.d==6,v.d
k=v.k
n=v.n
s0=star(v)
v.k=(k+1)%12
v.n=n+1
s1=makestar(v)
for j in range(v.d):
w=s1[j]
w.d=3
w.k=(6+2*j+k+1)%12
w.n=n+1
for j in range(v.d):
w=s0[j]
kk=(6+2*j+k)%12
if w.d==0:
pass
elif w.d==3:
w.d=4
w.k=(kk+4)%12
elif w.d==4:
w.d=5
if w.k==kk:
w.k=(kk+4)%12
else:
w.k=(kk-4)%12
elif w.d==5:
w.d=6
w.k=(kk-1)%12
w.n=n+1
else:
assert False,w.d
return s0
# opposites
def opp(v,i):
return adda(v,i,OPP)
def opposites(v):
s=array(v.d)
for i in range(0,2*v.d,2):
a,b,m=opp(v,i)
if not (a,b,m) in V:
a,b,m=opp(v,i+1)
s[i//2]=V[a,b,m]
return s
# faces and edges
def addedge(v1,v2):
a=[v1,v2]
j=a.index(min(a))
a=(a[j],a[(j+1)%2])
E[a]=True
def addface(v1,v2,v3,v4):
a=[v1.id,v2.id,v3.id,v4.id]
j=a.index(min(a))
a=(a[j],a[(j+1)%4],a[(j+2)%4],a[(j+3)%4])
F[a]=True
addedge(a[0],a[1])
addedge(a[1],a[2])
addedge(a[2],a[3])
addedge(a[3],a[0])
def addfaces(v):
s=star(v)
o=opposites(v)
for i in range(v.d):
addface(v,s[i],o[i],s[(i+1)%v.d])
# diamond or kite?
def facetype(k):
v1,v2,v3,v4=k
a1,b1,m1=U[v1].t
a2,b2,m2=U[v2].t
a3,b3,m3=U[v3].t
a4,b4,m4=U[v4].t
m=max(m1,m2,m3,m4)
d1=3**(m-m1); a1=a1*d1; b1=b1*d1
d2=3**(m-m2); a2=a2*d2; b2=b2*d2
d3=3**(m-m3); a3=a3*d3; b3=b3*d3
d4=3**(m-m4); a4=a4*d4; b4=b4*d4
if (a1+a3)==(a2+a4) and (b1+b3)==(b2+b4):
return "qd"
else:
return "qk"
# color face according to level
def facetype(k):
v1,v2,v3,v4=k
n=max(U[v1].n,U[v2].n,U[v3].n,U[v4].n)
return str(n)+" qt"
# refinement
queue=set()
# Eppstein's prerequisite structure of replacement operations
# must select all adjacent vertices beforehand: refine(w) can change v.d
# v.d!=6 can happen if object is near the boundary when base mesh is too small
def refine(v):
if v.d==4:
w0=adjacent(v,0)
w1=adjacent(v,1)
refine(w0)
refine(w1)
elif v.d==5:
w0=adjacent(v,0)
refine(w0)
#assert v.d==6,v
if v.d!=6:
return
if v.n>=R:
return
s=subdivide(v)
for w in s:
if w.d==4:
queue.add(w.t)
queue.add(v.t)
# refinement criterion: uniform
def needsrefinement(v):
return v.n < R
# refinement criterion: random
def needsrefinement(v):
return v.n < R and random() < 0.45
# refinement criterion: implicit curve
def needsrefinement(v):
z = min([f(w)*f(v) for w in star(v)])
return v.n < R and z<=0
# implicit curve (Taubin, 1994)
def f(v):
z=v.z-complex(8,4)
x,y=z.real,z.imag
z=0.004+0.110*x-0.177*y-0.174*x*x+0.224*x*y-0.303*y*y-0.168*x*x*x+0.327*x*x*y-0.087*x*y*y-0.013*y*y*y+0.235*x*x*x*x-0.667*x*x*x*y+0.745*x*x*y*y-0.029*x*y*y*y+0.072*y*y*y*y;
return z
# reduction: vertices of degree 3 that are adjacent to a vertex of degree 6
# same as vertices of degree 3 that are adjacent to an internal vertex
def redundant(v):
if v.d!=3:
return False
for w in star(v):
#if w.d!=0:
if w.d==6:
return True
return False
# main -----------------------------------------------------------------------
# initial mesh
if INPUT=="-":
basemesh(N)
else:
loadmesh(INPUT)
# refine mesh
queue = {k for k in V if V[k].d==6}
while queue:
k=next(iter(queue))
queue.remove(k)
v=V[k]
if needsrefinement(v):
refine(v)
# reconstruct mesh
for k in V:
if V[k].d>0:
addfaces(V[k])
# output PostScript
print('''\
%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 500 300
%%BoundingBox: 20 25 455 295
%%BoundingBox: 135 80 390 240
50 50 translate
25 dup scale
0 setlinewidth
1 setlinejoin
1 setlinecap
/c { 0.02 0 360 arc fill } bind def
/p { 0.04 0 360 arc fill } bind def
/l { moveto lineto stroke } bind def
/q { moveto lineto lineto lineto closepath fill } bind def
/p0 { 0.5 0.5 0.5 setrgbcolor p } bind def
/p3 { 0 0 1 setrgbcolor p } bind def
/p4 { 0 1 0 setrgbcolor p } bind def
/p5 { 1 0 1 setrgbcolor p } bind def
/p6 { 1 0 0 setrgbcolor p } bind def
/qd { 1 0.8 0.8 setrgbcolor q } bind def
/qk { 0.8 0.8 1 setrgbcolor q } bind def
/qt { 0.9 6 div mul 0.1 add 1 sub neg dup 1 setrgbcolor q } bind def
''')
print("%=ARG",R,INPUT)
print("%=VEF",R,len(V),len(U),len(E),len(F))
print("")
print("% faces")
print("1 0.8 0.8 setrgbcolor")
for k in F:
z1=U[k[0]].z
z2=U[k[1]].z
z3=U[k[2]].z
z4=U[k[3]].z
print(z1.real,z1.imag, z2.real,z2.imag, z3.real,z3.imag, z4.real,z4.imag,facetype(k))
print("")
print("% edges")
print("0 0 0 setrgbcolor")
print("0.01 setlinewidth")
for k in E:
z1=U[k[0]].z
z2=U[k[1]].z
print(z1.real,z1.imag, z2.real,z2.imag, "l")
print("")
print("% curve")
print("1 0 0 setrgbcolor")
for k in E:
v0=U[k[0]]; z0=v0.z; f0=f(v0)
v1=U[k[1]]; z1=v1.z; f1=f(v1)
if f0*f1<=0:
t=(f0-0)/(f0-f1)
print((1-t)*z0.real+t*z1.real,(1-t)*z0.imag+t*z1.imag, "c")
"""
print ""
print "% vertices"
print "0 0 0 setrgbcolor"
for k in U:
v=U[k]
print v.z.real, v.z.imag, "p" + str(v.d) # + "0" # + str(v.k)
"""
print("")
print("showpage")
print("%%EOF")
#exit() # if extra files not needed
# output CSV
print("")
PREFIX="%=CSV"
print(PREFIX, "a,b,m,d,k,n")
for k in range(len(U)):
v=U[k]
print(PREFIX, ','.join(map(str,[v.t[0],v.t[1],v.t[2],v.d,v.k,v.n])))
# output OBJ
print("")
PREFIX="%=OBJ"
print(PREFIX, "OBJ")
print(PREFIX, len(U),len(F),0)
for k in range(len(U)):
v=U[k]
print(PREFIX, "v", v.z.real, v.z.imag, 0)
for k in F:
print(PREFIX, "f",k[0]+1,k[1]+1,k[2]+1,k[3]+1)
# output OFF
print("")
PREFIX="%=OFF"
print(PREFIX, "OFF")
print(PREFIX, len(U),len(F),0)
for k in range(len(U)):
v=U[k]
print(PREFIX, v.z.real, v.z.imag, 0)
for k in F:
print(PREFIX, "4",k[0],k[1],k[2],k[3])
# done
print("")
print("%=EOF")