-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
229 lines (183 loc) · 7.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
########################################################
# This is an example of the training and test procedure
# You need to adjust the training and test dataloader based on your data
# CopyRight @ Xuesong Niu
########################################################
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import os
import shutil
import sys
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import scipy.io as sio
import torchvision.models as models
from torch.optim.lr_scheduler import MultiStepLR
import time
from tqdm import tqdm
sys.path.append('..')
from src.database.Pixelmap import PixelMap_fold_STmap
from src.model.model_disentangle import HR_disentangle_cross
from src.loss.loss_cross import Cross_loss
from src.loss.loss_r import Neg_Pearson
from src.loss.loss_SNR import SNR_loss
import numpy as np
batch_size_num = 2
epoch_num = 70
learning_rate = 0.0005
test_batch_size = 5
toTensor = transforms.ToTensor()
resize = transforms.Resize(size=(320, 320))
#######################################################
lambda_rec = 50
lambda_rppg = 2
lambda_cvd = 10
video_length = 300
########################################################################
### This is only a simple toy example dataloader (utils/database/PixelMap.py)
### This dataloader do not include the cross-validation division and training/test division.
### You need to adjust your dataloader based on your own data.
### parameter: root_dir: location of the MSTmaps
### VerticalFlip: random vertical flip for data augmentation
########################################################################
train_dataset = PixelMap_fold_STmap(root_dir='./data/train_data/',
Training=True, transform=transforms.Compose([resize, toTensor]), VerticalFlip=True,
video_length=video_length)
train_loader = DataLoader(train_dataset, batch_size=batch_size_num,
shuffle=True, num_workers=4)
test_dataset = PixelMap_fold_STmap(root_dir='./data/train_data/',
Training=False, transform=transforms.Compose([resize, toTensor]), VerticalFlip=False,
video_length=video_length)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size,
shuffle=False, num_workers=4)
#########################################################################
#########################################################################
#########################################################################
net = HR_disentangle_cross()
if torch.cuda.is_available():
net.cuda()
#########################################################################
lossfunc_HR = nn.L1Loss()
lossfunc_img = nn.L1Loss()
lossfunc_cross = Cross_loss(lambda_cvd=lambda_cvd)
lossfunc_ecg = Neg_Pearson(downsample_mode=0)
lossfunc_SNR = SNR_loss(clip_length=video_length, loss_type=7)
optimizer = torch.optim.Adam([{'params': net.parameters(), 'lr': 0.0005}])
def hr_error(ground_true, predict):
return abs(predict - ground_true)
def rmse(loss):
return np.sqrt(np.mean(loss ** 2))
def mae(loss):
return np.mean(loss)
def mer(ground_true, loss):
return np.mean(loss / ground_true) * 100
def std(loss, hr_mae):
return np.sqrt(np.mean((loss - hr_mae) ** 2))
def r(ground_true, predict):
g = ground_true - np.mean(ground_true)
p = predict - np.mean(predict)
return np.sum(g * p) / (np.sqrt(np.sum(g ** 2)) * np.sqrt(np.sum(p ** 2)))
def compute_criteria(target_hr_list, predicted_hr_list):
hr_loss = hr_error(target_hr_list, predicted_hr_list)
hr_mae = mae(hr_loss)
hr_rmse = rmse(hr_loss)
hr_mer = mer(target_hr_list, hr_loss)
hr_std = std(hr_loss, hr_mae)
pearson = r(target_hr_list, predicted_hr_list)
return {"MAE": hr_mae, "RMSE": hr_rmse, "STD": hr_std, "MER": hr_mer, "r": pearson}
def train(epoch):
start_time = time.time()
net.train()
train_loss = 0
count = 0
predict_hr = []
gt_hr = []
for (data, bpm, fps, bvp, idx) in tqdm(train_loader):
count+=1
data = Variable(data)
bvp = Variable(bvp)
bpm = Variable(bpm.view(-1, 1))
fps = Variable(fps.view(-1, 1))
data, bpm = data.cuda(), bpm.cuda()
fps = fps.cuda()
bvp = bvp.cuda()
feat_p, feat_n, output, img_out, \
feat_pes_p1, feat_pes_n1, hr_pes1, idx1, \
feat_pes_p2, feat_pes_n2, hr_pes2, idx2, \
ecg, ecg_pes_1, ecg_pes_2 = net(data)
for idx in range(bpm.shape[0]):
predict_hr.append(output[idx].item() * fps[idx].item() * 60 / video_length)
gt_hr.append(bpm[idx].item() * fps[idx].item() * 60 / video_length)
loss_hr = lossfunc_HR(output, bpm)
loss_rec = lossfunc_img(data, img_out) * lambda_rec * 2
loss_rppg = lossfunc_ecg(ecg, bvp) * lambda_rppg
loss_SNR, tmp = lossfunc_SNR(ecg, bpm, fps, pred=output, flag=None)
loss_pre = loss_hr + loss_rppg + loss_SNR
loss_cvd, loss_hr1, loss_hr2, loss_fhr1, loss_fhr2, loss_fn1, loss_fn2, loss_hr_dis1, loss_hr_dis2 = lossfunc_cross(
feat_p, feat_n, output,
feat_pes_p1, feat_pes_n1,
hr_pes1, idx1,
feat_pes_p2, feat_pes_n2,
hr_pes2, idx2, bpm)
loss = loss_rec + loss_cvd + loss_pre
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
end_time = time.time()
cost_time = end_time - start_time
metrics = compute_criteria(np.array(gt_hr), np.array(predict_hr))
print(f"\nFinished [Epoch: {epoch}/{epoch_num}]",
"\nTraining Loss: {:.3f} |".format(train_loss/count),
"MAE : {:.3f} |".format(metrics["MAE"]),
"RMSE : {:.3f} |".format(metrics["RMSE"]),
"STD : {:.3f} |".format(metrics["STD"]),
"MER : {:.3f}% |".format(metrics["MER"]),
"r : {:.3f} |".format(metrics["r"]),
"time: {} m:{} s".format(int(cost_time % 60), int(cost_time / 60)))
def test():
net.eval()
test_loss = 0
count = 0
predict_hr = []
gt_hr = []
for (data, hr, fps, bvp, idx) in test_loader:
count += 1
data = Variable(data)
hr = Variable(hr.view(-1, 1))
fps = Variable(fps.view(-1, 1))
data, hr = data.cuda(), hr.cuda()
feat_hr, feat_n, output, img_out, feat_hrf1, feat_nf1, hrf1, idx1, feat_hrf2, feat_nf2, hrf2, idx2, ecg, ecg1, ecg2 = net(
data)
loss = lossfunc_HR(output, hr)
for idx in range(hr.shape[0]):
predict_hr.append(output[idx].item() * fps[idx].item() * 60 / video_length)
gt_hr.append(hr[idx].item() * fps[idx].item() * 60 / video_length)
test_loss += loss.item()
metrics = compute_criteria(np.array(gt_hr), np.array(predict_hr))
print("\nTest Loss: {:.3f} |".format(test_loss/count),
"MAE : {:.3f} |".format(metrics["MAE"]),
"RMSE : {:.3f} |".format(metrics["RMSE"]),
"STD : {:.3f} |".format(metrics["STD"]),
"MER : {:.3f}% |".format(metrics["MER"]),
"r : {:.3f} |".format(metrics["r"])
)
def run():
begin_epoch = 1
scheduler = MultiStepLR(optimizer, milestones=[30, 80], gamma=0.5)
for epoch in range(begin_epoch, epoch_num + 1):
if epoch > 20:
train_dataset.transform = transforms.Compose([resize, toTensor])
train_dataset.VerticalFlip = False
train_loader = DataLoader(train_dataset, batch_size=batch_size_num,
shuffle=True, num_workers=4)
train(epoch)
test()
if __name__ == "__main__":
run()
# it = iter(train_loader)
# data = next(it)
# print(data[0].shape)