forked from ianad/lighthall-pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing3.py
322 lines (235 loc) · 12.1 KB
/
preprocessing3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
###NOTES:
"""
DEPENDENCY ISSUES:
1. If you decide to use freesurfer, make sure FREESURFER_HOME is environment variable on your computer.
For macs it said to put it in .bhrc or something but for the lab mac, it's a different extension for some reason.
**look for where the variables on your computer are stored**
2. To draw the workflow graph, you have to make sure to have dot downloaded.
FORMAT ISSUES:
1. If it is a function where it would like all of the outputs of the previous node (it requests a list like sliceTiming),
make the previous node is a map node.
Refer to the bet node for example.
2. To unzip a file use gunzip
3. Here are some functions for converting formats so donut fret:
convert2nii = Node(MRIConvert(out_type='nii'), name='convert2nii')
4. DO REALIGN FIRST!!!!!!! FOR SOME REASON IT REQUIRES A LIST OF FILES BUT THEN IF YOU CREATE A MAP NODE THEN IT TURNS IT ALL INTO ONE RUN
FINDING FILES:
1.Freesurfer has a weird way of looking for files, this is the method they use. You will need this to pass in subject_id
and your folders will have to be in a certain format for it to work.
# FreeSurferSource - Data grabber specific for FreeSurfer data
fssource = Node(FreeSurferSource(subjects_dir=fs_dir),
run_without_submitting=True,
name='fssource')
2. There is a file grabber called datagrabber (kind of confusing), however 3. is another way to do it
3.
#This will go through each subject_id, you can pass this into anything that needs subject_id
infosource = Node(IdentityInterface(fields=['subject_id']),
name="infosource")
infosource.iterables = [('subject_id', subject_list)]
#define what the file name will be, with {} around variables you put in
templates = {'func': 'data/{subject_id}/mri/func.nii.gz',
'struct': 'freesurfer/{subject_id}/mri/brainmask.nii.gz'}
selectfiles = Node(SelectFiles(templates2,
base_directory=experiment_dir),
name="selectfiles")
#Gunzip if you need to unzip, otherwise leave this part out
gunzip = Node(Gunzip(), name="gunzip")
#HOW TO CONNECT THEM
workflowname.connect([(infosource, selectfiles2, [('subject_id', 'subject_id')]),
(selectfiles2, gunzip2, [('func', 'in_file')]),
(gunzip2, coregister, [('out_file', 'source')]),
])
FOR HELP:
1. Tutorials used:
http://miykael.github.io/nipype-beginner-s-guide/firstLevel.html
http://nipype.readthedocs.io/en/latest/users/examples/fmri_spm.html
2. To get help on a function, type Function.help() for the mandatory and optional inputs and outputs
EXAMPLE: BET.help()
3. To read pklz files (this is the file type for the crash files) go onto commandline and type:
nipypecli crash /filelocation/filename.pklz
To see what nipypecli can do, just type nipypecli
nipype_read_crash does not work! Do not use this.
"""
# Import modules
from os.path import join as opj
from nipype.interfaces.fsl import BET
from nipype.interfaces.afni import Despike
from nipype.interfaces.spm import (SliceTiming, Realign, Smooth, Level1Design,
EstimateModel, EstimateContrast, Coregister, Normalize, Smooth)
from nipype.interfaces.utility import Function, IdentityInterface
from nipype.interfaces.io import FreeSurferSource, SelectFiles, DataSink, DataGrabber
from nipype.algorithms.rapidart import ArtifactDetect
from nipype.algorithms.misc import TSNR, Gunzip
from nipype.algorithms.modelgen import SpecifySPMModel
from nipype.pipeline.engine import Workflow, Node, MapNode
# MATLAB - Specify path to current SPM and the MATLAB's default mode
from nipype.interfaces.matlab import MatlabCommand
#change
##Edit as necessary
# preprocess(studyfile, startSubject, endSubject):
#Have to check this path
MatlabCommand.set_default_paths('/Users/lighthalllab/Documents/MATLAB/toolbox/spm12')
MatlabCommand.set_default_matlab_cmd("/Applications/MATLAB_R2015a.app/bin/matlab -nodesktop -nosplash")
"""
# FreeSurfer - Specify the location of the freesurfer folder
fs_dir = '/Volumes/Research2/Lighthall_Lab/experiments/cjfmri-1/data/fmri/Lucy_testing/Copy/Func/freesurfer'
FSCommand.set_default_subjects_dir(fs_dir)"""
###
# Specify variables
experiment_dir = '/Volumes/Research2/Lighthall_Lab/experiments/cjfmri-1/data/fmri/Lucy_testing/Copy/Func' # location of experiment folder
output_dir = 'output_fMRI_example_1st' # name of 1st-level output folder
working_dir = 'workingdir_fMRI_example_4rd' # name of 1st-level working directory
subject_list = ["1002", "1003"] # list of subject identifiers
session_list = ['Enc1', 'Jud2'] # list of session identifiers
number_of_slices = 38 # number of slices in volume
TR = 2.0 # time repetition of volume
smoothing_size = 8 # size of FWHM in mm
TPMLocation = "/Applications/MATLAB_R2015a.app/toolbox/spm12/tpm/TPM.nii"
print("finish set up")
###
# Specify Preprocessing Nodes
# Infosource - a function free node to iterate over the list of subject names
infosource = Node(IdentityInterface(fields=['subject_id',
'session_id']),
name="infosource")
infosource.iterables = [('subject_id', subject_list),
('session_id', session_list)]
# SelectFiles
templates = {'func': 'data/{subject_id}/{session_id}.nii.gz',
'struct': 'data/{subject_id}/Struct.nii.gz'}
selectfiles = Node(SelectFiles(templates,
base_directory=experiment_dir),
name="selectfiles")
"""
datasource = Node(interface=DataGrabber(infields=['subject_id'],
outfields=['func', 'struct']),
name='datasource')
datasource.inputs.base_directory = experiment_dir
###Here set what the file name looks like
datasource.inputs.template = 'data/%s/%s.nii.gz'
datasource.inputs.template_args = info
datasource.inputs.sort_filelist = True
"""
# Despike - Removes 'spikes' from the 3D+time input dataset
bet = MapNode(BET(output_type='NIFTI'), name='bet', iterfield='in_file')
"""
despike = MapNode(Despike(outputtype='NIFTI'),
name="despike", iterfield=['in_file'])
"""
# Slicetiming - correct for slice wise acquisition
interleaved_order = list(range(1,number_of_slices+1,2)) + list(range(2,number_of_slices+1,2))
sliceTiming = Node(SliceTiming(num_slices=number_of_slices,
time_repetition=TR,
time_acquisition=TR-TR/number_of_slices,
slice_order=interleaved_order,
ref_slice=number_of_slices//2),
name="sliceTiming")
# Realign - correct for motion
realign = Node(Realign(register_to_mean=True),
name="realign")
# Artifact Detection - determine which of the images in the functional series
# are outliers. This is based on deviation in intensity or movement.
art = Node(ArtifactDetect(norm_threshold=1,
zintensity_threshold=3,
mask_type='file',
parameter_source='SPM',
use_differences=[True, False]
),
name="art")
#Gunzip - unzip anatomical
gunzip2 = Node(Gunzip(), name="gunzip2")
gunzip = Node(Gunzip(), name="gunzip")
sliceTiming = Node(SliceTiming(num_slices=number_of_slices,
time_repetition=TR,
time_acquisition=TR-TR/number_of_slices,
slice_order=interleaved_order,
ref_slice=19),
name="sliceTiming")
# Realign - correct for motion
realign = Node(Realign(register_to_mean=True),
name="realign")
# Artifact Detection - determine which of the images in the functional series
# are outliers. This is based on deviation in intensity or movement.
art = Node(ArtifactDetect(norm_threshold=1,
zintensity_threshold=3,
mask_type='spm_global',
parameter_source='SPM'),
name="art")
# Smooth - to smooth the images with a given kernel
smooth = Node(Smooth(fwhm=smoothing_size),
name="smooth")
coregister = Node(Coregister(), name='coregister')
#replaces volume transformation
normalize = Node(interface=Normalize(), name="normalize")
normalize.inputs.template = TPMLocation
print("finished nodes")
###
# Specify Preprocessing Workflow & Connect Nodes
# Create a preprocessing workflow
preproc = Workflow(name='preproc')
# Connect all components of the preprocessing workflow
# Coregister: source image is the anatomical image, mean_image is the functional image
preproc.connect([(infosource, selectfiles, [('subject_id', 'subject_id'),
('session_id', 'session_id')]),
(selectfiles, gunzip, [('func', 'in_file')]),
#(infosource, datasource, [('subject_id', 'subject_id')]),
#(datasource, bet, [('func', 'in_file')]),
#(datasource, gunzip, [('func', 'in_file')]),
#(datasource, sliceTiming, [('func', 'in_files')]),
#(gunzip, sliceTiming, [('out_file', 'in_files')]),
(gunzip, sliceTiming, [('out_file', 'in_files')]),
(sliceTiming, realign, [('timecorrected_files', 'in_files')]),
(selectfiles, gunzip2, [('struct', 'in_file')]),
(gunzip2, coregister, [('out_file', 'source')]),
#(sliceTiming, bet, [('timecorrected_files', 'in_file')]),
(realign, coregister, [('mean_image', 'target')]),
(gunzip2, normalize, [('out_file', 'source')]),
(coregister, normalize, [('coregistered_files', 'apply_to_files')]),
#(normalize, smooth, [('normalized_files', 'in_files')]),
#(realign, applyVolTrans, [('mean_image', 'source_file')]),
#(applyVolTrans, binarize, [('transformed_file', 'in_file')]),
])
print("finish preprocess workflow")
# Specify Meta-Workflow & Connect Sub-Workflows
metaflow = Workflow(name='metaflow')
metaflow.base_dir = opj(experiment_dir, working_dir)
###
# Input & Output Stream
# Infosource - a function free node to iterate over the list of subject names
infosource = Node(IdentityInterface(fields=['subject_id']),
name="infosource")
infosource.iterables = [('subject_id', subject_list)]
# SelectFiles - to grab the data (alternativ to DataGrabber)
templates = {'func': 'data/{subject_id}/CJ*.nii.gz'}
selectfiles = Node(SelectFiles(templates,
base_directory=experiment_dir),
name="selectfiles")
# Datasink - creates output folder for important outputs
datasink = Node(DataSink(base_directory=experiment_dir,
container=output_dir),
name="datasink")
# Use the following DataSink output substitutions
substitutions = [('_subject_id_', ''),
#('_despike', ''),
('_detrended', ''),
('_warped', '')]
datasink.inputs.substitutions = substitutions
# Connect Infosource, SelectFiles and DataSink to the main workflow
metaflow.connect([(preproc, datasink, [('sliceTiming.timecorrected_files',
'preprocout.@timecorrect_files'),
('realign.mean_image',
'preprocout.@mean'),
('realign.realignment_parameters',
'preprocout.@parameters'),
('coregister.coregistered_files',
'preprocout.@coregistered_files'),
]),
])
"""('binarize.binary_file',
'preprocout.@brainmask'),"""
###
# Run Workflow
print("before graph")
metaflow.write_graph(graph2use='colored')
print("done building")
metaflow.run('MultiProc', plugin_args={'n_procs': 6})