-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsemicd.py
107 lines (86 loc) · 4.27 KB
/
semicd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from .transform_cd import *
from copy import deepcopy
import math
import numpy as np
import os
import random
from PIL import Image
import torch
from torch.utils.data import Dataset
from torchvision import transforms
from mmseg.datasets.pipelines.transforms import Resize, PhotoMetricDistortion
class SemiCDDataset(Dataset):
def __init__(self, cfg, mode, id_path=None, nsample=None):
self.name = cfg['dataset']
self.root = os.path.expandvars(os.path.expanduser(cfg['data_root']))
self.mode = mode
self.size = cfg['crop_size']
self.img_scale = cfg['img_scale']
self.vl_label_root = cfg['vl_label_root']
self.vl_change_label_root = cfg['vl_change_label_root']
if mode == 'train_l' or mode == 'train_u':
with open(id_path, 'r') as f:
self.ids = f.read().splitlines()
if mode == 'train_l' and nsample is not None:
self.ids *= math.ceil(nsample / len(self.ids))
self.ids = self.ids[:nsample]
else:
with open('splits/%s/test.txt' % self.name, 'r') as f:
self.ids = f.read().splitlines()
def __getitem__(self, item):
id = self.ids[item]
imgA = Image.open(os.path.join(self.root, 'A', id)).convert('RGB')
imgB = Image.open(os.path.join(self.root, 'B', id)).convert('RGB')
mask = np.array(Image.open(os.path.join(self.root, 'label', id)))
mask = mask / 255
mask = Image.fromarray(mask.astype(np.uint8))
if self.mode == 'val':
imgA, mask = normalize(imgA, mask)
imgB = normalize(imgB)
return imgA, imgB, mask, id
# get pseudo labels
vl_mask_A = Image.open(os.path.join(self.vl_label_root, 'A', id))
vl_mask_B = Image.open(os.path.join(self.vl_label_root, 'B', id))
vl_mask_change = Image.open(os.path.join(self.vl_change_label_root, id))
masks = [mask, vl_mask_change, vl_mask_A, vl_mask_B]
imgA, imgB, masks = resize(imgA, imgB, masks, (0.8, 1.2))
imgA, imgB, masks = crop(imgA, imgB, masks, self.size)
imgA, imgB, masks = hflip(imgA, imgB, masks, p=0.5)
mask, vl_mask_change, vl_mask_A, vl_mask_B = masks
if self.mode == 'train_l':
imgA, mask = normalize(imgA, mask)
imgB = normalize(imgB)
vl_mask_change = torch.from_numpy(np.array(vl_mask_change)).long()
vl_mask_A = torch.from_numpy(np.array(vl_mask_A)).long()
vl_mask_B = torch.from_numpy(np.array(vl_mask_B)).long()
return imgA, imgB, mask, vl_mask_change, vl_mask_A, vl_mask_B
imgA_w, imgB_w = deepcopy(imgA), deepcopy(imgB)
imgA_s1, imgA_s2 = deepcopy(imgA), deepcopy(imgA)
imgB_s1, imgB_s2 = deepcopy(imgB), deepcopy(imgB)
if random.random() < 0.8:
imgA_s1 = transforms.ColorJitter(0.5, 0.5, 0.5, 0.25)(imgA_s1)
imgA_s1 = blur(imgA_s1, p=0.5)
cutmix_box1 = obtain_cutmix_box(imgA_s1.size[0], p=0.5)
if random.random() < 0.8:
imgB_s1 = transforms.ColorJitter(0.5, 0.5, 0.5, 0.25)(imgB_s1)
imgB_s1 = blur(imgB_s1, p=0.5)
if random.random() < 0.8:
imgA_s2 = transforms.ColorJitter(0.5, 0.5, 0.5, 0.25)(imgA_s2)
imgA_s2 = blur(imgA_s2, p=0.5)
cutmix_box2 = obtain_cutmix_box(imgA_s2.size[0], p=0.5)
if random.random() < 0.8:
imgB_s2 = transforms.ColorJitter(0.5, 0.5, 0.5, 0.25)(imgB_s2)
imgB_s2 = blur(imgB_s2, p=0.5)
ignore_mask = Image.fromarray(np.zeros((mask.size[1], mask.size[0])))
ignore_mask = torch.from_numpy(np.array(ignore_mask)).long()
mask = torch.from_numpy(np.array(mask)).long()
ignore_mask[mask == 255] = 255
# pseudo labels to tensor
vl_mask_change = torch.from_numpy(np.array(vl_mask_change)).long()
vl_mask_A = torch.from_numpy(np.array(vl_mask_A)).long()
vl_mask_B = torch.from_numpy(np.array(vl_mask_B)).long()
return normalize(imgA_w), normalize(imgB_w), normalize(imgA_s1), normalize(imgB_s1), \
normalize(imgA_s2), normalize(imgB_s2), ignore_mask, cutmix_box1, cutmix_box2, \
vl_mask_change, vl_mask_A, vl_mask_B
def __len__(self):
return len(self.ids)