-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize.py
66 lines (49 loc) · 1.86 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
For instance,
python visualize.py --config exp/exp-47/xxx/config.yaml --checkpoint exp/exp-47/xxx/best.pth --save_dir tmp_vis
"""
import os
import argparse
import mmcv
import torch
import yaml
from torch.utils.data import DataLoader
from datasets.palettes import get_palette
from model.builder import build_model
from model.backbone.semi_resnet import semi_resnet50
from third_party.unimatch.dataset.semicd import SemiCDDataset
from utils.plot_utils import colorize_label
from version import __version__
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--checkpoint', type=str, required=True)
parser.add_argument('--save_dir', type=str, required=True)
args = parser.parse_args()
with open(args.config, "r") as fp:
cfg = yaml.load(fp, Loader=yaml.Loader)
model = build_model(cfg)
model.cuda()
state_dict = torch.load(args.checkpoint)
state_dict = state_dict['model']
# multiple GPU to signle GPU
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith('module.'):
new_state_dict[k[7:]] = v
else:
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
valset = SemiCDDataset(cfg, 'val')
valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=1)
palette = get_palette(cfg['dataset'])
os.makedirs(args.save_dir, exist_ok=True)
for imgA_x, imgB_x, mask_x, id in valloader:
imgA_x, imgB_x = imgA_x.cuda(), imgB_x.cuda()
mask_x = mask_x.cuda()
with torch.no_grad():
model.eval()
out = model(imgA_x, imgB_x)
out = torch.argmax(out, dim=1)
label = colorize_label(out.squeeze(0).cpu(), palette)
mmcv.imwrite(label, os.path.join(args.save_dir, id[0]))