-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathlppl_research.py
79 lines (64 loc) · 2.11 KB
/
lppl_research.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from matplotlib import pyplot as plt
# import datetime
import lib.lppl as lppltool
import lib.datetime_utils as ut
import jqdatasdk as jq
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_style('white')
times = []
def get_stock_closes(stock, end_date, ndays=350):
start_date = ut.get_ndays_before(end_date, ndays)
print("start_date:", start_date, " end_date:", end_date)
df_list = jq.get_price(
stock,
start_date=start_date,
end_date=end_date,
frequency='daily',
fields=['close'])
return df_list['close'].tolist()
if __name__ == "__main__":
user_name = '18602166903'
passwd = '13773275'
jq.auth(user_name, passwd)
today = '2016-06-10'
closes = get_stock_closes('000300.XSHG', today, 200)
lppltool.set_closes(closes)
print("len(closes)", len(closes))
lppltool.set_lppl_flag(False)
limits = ([8.4, 8.8], [-1, -0.1], [-20, 20], [.1, .9], [-1, 1], [12, 18],
[0, 2 * np.pi])
# limits = ([8.5, 8.6], [-0.25, -0.12], [-3, 3], [.15, .4], [0.05, 0.1],
# [4, 8], [0, 2 * np.pi])
x = lppltool.Population(limits, 30, 0.3, 1.5, .1)
for i in range(2):
x.Fitness()
x.Eliminate()
x.Mate()
x.Mutate()
x.Fitness()
values = x.BestSolutions(3)
for x in values:
print(x.print_individual())
times = np.linspace(0, len(closes) + 50, len(closes) + 50 + 1)
cnt = 50 + 1
deps = [values[0].get_DataSeries()[1][-1] for i in range(cnt)]
indexs = values[0].get_DataSeries()[1] + deps
# data = pd.DataFrame({
# 'Date': values[0].get_DataSeries()[0],
# 'Index': values[0].get_DataSeries()[1],
# 'Fit1': values[0].get_ExpData(),
# 'Fit2': values[1].get_ExpData(),
# 'Fit3': values[2].get_ExpData()
# })
data = pd.DataFrame({
'Date': times,
'Index': indexs,
'Fit1': values[0].get_expre_data(times),
'Fit2': values[1].get_expre_data(times),
'Fit3': values[2].get_expre_data(times)
})
data = data.set_index('Date')
data.plot(figsize=(14, 8))
plt.show()