-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathjaccard.py
62 lines (51 loc) · 1.97 KB
/
jaccard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# ----------------------------------------------------------------------------
# A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation
#-----------------------------------------------------------------------------
# Copyright (c) 2016 Federico Perazzi
# Licensed under the BSD License [see LICENSE for details]
# Written by Federico Perazzi
# ----------------------------------------------------------------------------
""" Compute Jaccard Index. """
import numpy as np
import glob
import os
from PIL import Image
from options import OPTION as opt
def db_eval_iou(annotation,segmentation):
""" Compute region similarity as the Jaccard Index.
Arguments:
annotation (ndarray): binary annotation map.
segmentation (ndarray): binary segmentation map.
Return:
jaccard (float): region similarity
"""
annotation = annotation.astype(np.bool)
segmentation = segmentation.astype(np.bool)
if np.isclose(np.sum(annotation),0) and np.isclose(np.sum(segmentation),0):
return 1
else:
return np.sum((annotation & segmentation)) / \
np.sum((annotation | segmentation),dtype=np.float32)
def eval_jaccard():
root_dir = 'data/'
pred_dir = root_dir + opt.output_dir +'/MSD/'
gt_dir = root_dir + 'MSD/Task10_mask/'
filelist = os.listdir(pred_dir)
jaccards = np.zeros(len(filelist))
for i in range(0, len(filelist)):
item = os.path.join(pred_dir,filelist[i])
preds = os.listdir(item)
_mask = []
_gt = []
for ii in range(len(preds)):
filename = os.path.join(item, preds[ii])
mask = np.array(Image.open(filename)).astype(np.float32)
gt = np.array(Image.open(os.path.join(gt_dir, filelist[i],preds[ii].split('-')[1]))).astype(np.float32)
_mask.append(mask)
_gt.append(gt)
jaccards[i] = db_eval_iou(np.stack(_gt,0), np.stack(_mask,0))
J = jaccards.mean()
print("jaccard:",J)
return J
if __name__ == '__main__':
eval_jaccard()