-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_dextr.py
169 lines (141 loc) · 7.15 KB
/
train_dextr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from datetime import datetime
import scipy.misc as sm
from collections import OrderedDict
import numpy as np
import timeit
# PyTorch includes
import torch
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
# Custom includes
import dataloaders.CVC as CVC
from dataloaders import custom_transforms_dextr as tr
from dataloaders.helpers_dextr import *
from networks.loss import class_cross_entropy_loss
from networks.mainnetwork import *
# Set gpu_id to -1 to run in CPU mode, otherwise set the id of the corresponding gpu
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2,3"
# device = torch.device("cuda:"+str(gpu_id) if torch.cuda.is_available() else "cpu")
# if torch.cuda.is_available():
# print('Using GPU: {} '.format(gpu_id))
# Setting parameters
use_sbd = False # train with SBD
nEpochs = 200 # Number of epochs for training
resume_epoch = 0 # Default is 0, change if want to resume
p = OrderedDict() # Parameters to include in report
p['trainBatch'] = 9 # Training batch size 5
snapshot = 10 # Store a model every snapshot epochs
nInputChannels = 4 # Number of input channels (RGB + heatmap of extreme points)
p['nAveGrad'] = 1 # Average the gradient of several iterations
p['lr'] = 1e-8 # Learning rate
p['wd'] = 0.0005 # Weight decay
p['momentum'] = 0.9 # Momentum
# Results and model directories (a new directory is generated for every run)
save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__)))
exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1]
run_id = 12
save_dir = os.path.join(save_dir_root, 'run_' + str(run_id))
if not os.path.exists(os.path.join(save_dir, 'models')):
os.makedirs(os.path.join(save_dir, 'models'))
# Network definition
modelName = 'IOG_CVC'
net = Network(nInputChannels=nInputChannels,num_classes=1,
backbone='resnet101',
output_stride=16,
sync_bn=None,
freeze_bn=False,
pretrained=True)
net = torch.nn.DataParallel(net).cuda()
if resume_epoch == 0:
print("Pretain weights from: {}".format(
os.path.join('two_1', 'models', modelName + '_epoch-319.pth')))
pretrained_dict = torch.load(os.path.join('two_1', 'models', modelName + '_epoch-319.pth'))
#model.load_state_dict(pretrained_dict)
model_dict = net.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict.keys()}
conv1_weight_new=np.zeros( (64,nInputChannels,7,7) )
conv1_weight_new[:,:3,:,:]=pretrained_dict['module.backbone.conv1.weight'].cpu().data[:,:3,:,:]
pretrained_dict['module.backbone.conv1.weight']=torch.from_numpy(conv1_weight_new)
print("Weights cannot be loaded:")
print([k for k in model_dict.keys() if k not in pretrained_dict.keys()])
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)
else:
print("Initializing weights from: {}".format(
os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth')))
pretrained_dict = torch.load(os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth'))
#model.load_state_dict(pretrained_dict)
model_dict = net.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict.keys()}
print("Weights cannot be loaded:")
print([k for k in model_dict.keys() if k not in pretrained_dict.keys()])
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)
train_params = [{'params': net.module.get_1x_lr_params(), 'lr': p['lr']},
{'params': net.module.get_10x_lr_params(), 'lr': p['lr'] * 10}]
if resume_epoch != nEpochs:
# Logging into Tensorboard
# Use the following optimizer
optimizer = optim.SGD(train_params, lr=p['lr'], momentum=p['momentum'], weight_decay=p['wd'])
p['optimizer'] = str(optimizer)
# Preparation of the data loaders
composed_transforms_tr = transforms.Compose([
tr.RandomHorizontalFlip(),
tr.ScaleNRotate(rots=(-20, 20), scales=(.75, 1.25)),
tr.CropFromMask(crop_elems=('image', 'gt'), relax=50, zero_pad=True),
tr.FixedResize(resolutions={'crop_image': (512, 512), 'crop_gt': (512, 512)},flagvals={'crop_image':cv2.INTER_LINEAR,'crop_gt':cv2.INTER_LINEAR}),
tr.ExtremePoints(sigma=10, pert=5, elem='crop_gt'),
tr.ToImage(norm_elem='extreme_points'),
tr.ConcatInputs(elems=('crop_image', 'extreme_points')),
tr.ToTensor()])
voc_train = CVC.CVCSegmentation(split='train', transform=composed_transforms_tr)
db_train = voc_train
p['dataset_train'] = str(db_train)
p['transformations_train'] = [str(tran) for tran in composed_transforms_tr.transforms]
trainloader = DataLoader(db_train, batch_size=p['trainBatch'], shuffle=True, num_workers=2,drop_last=True)
# Train variables
num_img_tr = len(trainloader)
running_loss_tr = 0.0
aveGrad = 0
print("Training Network")
for epoch in range(resume_epoch, nEpochs):
start_time = timeit.default_timer()
epoch_loss = []
net.train()
for ii, sample_batched in enumerate(trainloader):
gts = sample_batched['crop_gt']
inputs = sample_batched['concat']
inputs.requires_grad_()
inputs, gts = inputs.cuda(), gts.cuda()
coarse_outs1,coarse_outs2,coarse_outs3,coarse_outs4,fine_out = net.forward(inputs)
# Compute the losses
loss_coarse_outs1 = class_cross_entropy_loss(coarse_outs1, gts, void_pixels=None)
loss_coarse_outs2 = class_cross_entropy_loss(coarse_outs2, gts, void_pixels=None)
loss_coarse_outs3 = class_cross_entropy_loss(coarse_outs3, gts, void_pixels=None)
loss_coarse_outs4 = class_cross_entropy_loss(coarse_outs4, gts, void_pixels=None)
loss_fine_out = class_cross_entropy_loss(fine_out, gts, void_pixels=None)
loss = loss_coarse_outs1+loss_coarse_outs2+ loss_coarse_outs3+loss_coarse_outs4+loss_fine_out
if ii % 10 ==0:
print('Epoch',epoch,'step',ii,'loss',loss)
running_loss_tr += loss.item()
# Print stuff
if ii % num_img_tr == num_img_tr - 1 -p['trainBatch']:
running_loss_tr = running_loss_tr / num_img_tr
print('[Epoch: %d, numImages: %5d]' % (epoch, ii*p['trainBatch']+inputs.data.shape[0]))
print('Loss: %f' % running_loss_tr)
running_loss_tr = 0
stop_time = timeit.default_timer()
print("Execution time: " + str(stop_time - start_time)+"\n")
# Backward the averaged gradient
loss /= p['nAveGrad']
loss.backward()
aveGrad += 1
# Update the weights once in p['nAveGrad'] forward passes
if aveGrad % p['nAveGrad'] == 0:
optimizer.step()
optimizer.zero_grad()
aveGrad = 0
# Save the model
if (epoch % snapshot) == snapshot - 1 and epoch != 0:
torch.save(net.state_dict(), os.path.join(save_dir, 'models', modelName + '_epoch-' + str(epoch) + '.pth'))