-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_af_multimer.py
117 lines (95 loc) · 3.5 KB
/
run_af_multimer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python
#-*- coding:utf-8 -*-
###############################################
#
#
# Run AlphaFold-Multimer step by step
# (https://github.com/deepmind/alphafold)
# Author: Pan Li ([email protected])
# @ Shuimu BioScience
# https://www.shuimubio.com/
#
#
################################################
#
#
# AlphaFold-Multimer Step 1-4
# Usage: run_af_multimer.py [--skip_refine] /path/to/input.fasta /path/to/output
# Step 1: Search homologous sequences and templates
# Step 2: Run models 1-5 to produce the unrelaxed models
# Step 3: Relax models
# Step 4: Sort models
#
#
running_str = """
Run AlphaFold-Multimer step by step
# Step 1: Search homologous sequences and templates
# Step 2: Run models 1-5 to produce the unrelaxed models
# Step 3: Relax models. Very slow for large protein complex
# Step 4: Sort models
"""
import json
import os
import pathlib
import pickle
import random
import shutil
import sys
import time
import gzip
from typing import Dict, Union, Optional
import numpy as np
import argparse
cur_path = pathlib.Path(__file__).parent.resolve()
parser = argparse.ArgumentParser(description='AlphaFold-Multimer pipeline')
parser.add_argument('input_file', metavar='input_file', type=str, help='The fasta file to process, must contain multiple sequences.')
parser.add_argument('output_dir', metavar='output_dir', type=str, help='Path to a directory that will store the results.')
parser.add_argument('--max_template_date', default='2021-11-03', type=str, help="Maximun date to search for templates.")
parser.add_argument('--skip_refine', action='store_true', help='Skip the refine step (step 3)')
args = parser.parse_args()
print(running_str, flush=True)
step1_file = os.path.join(cur_path, 'run_af_multimer_step1.py')
step2_file = os.path.join(cur_path, 'run_af_multimer_step2.py')
step3_file = os.path.join(cur_path, 'run_af_multimer_step3.py')
step4_file = os.path.join(cur_path, 'run_af_multimer_step4.py')
########################
### Step 1
########################
cmd = f"python {step1_file} {args.input_file} {args.output_dir} --max_template_date {args.max_template_date}"
print("Run Step 1: Search homologous sequences and templates")
if os.system(cmd) != 0:
print("Step 1 Failed")
exit(-1)
########################
### Step 2
########################
cmd = f"python {step2_file} {args.output_dir}/features.pkl.gz {args.output_dir}"
print("Run Step 2: Run models 1-5 to produce the unrelaxed models")
if os.system(cmd) != 0:
print("Step 2 Failed")
exit(-1)
########################
### Step 3
########################
print("Run Step 3: Relax models. Very slow for large protein complex")
if args.skip_refine:
print("Step 3 skipped")
else:
for i in range(1, 6):
cmd = f"python {step3_file} {args.output_dir}/unrelaxed_model_{i}_multimer.pdb {args.output_dir}/relaxed_model_{i}_multimer.pdb"
if os.system(cmd) != 0:
print("Step 3 Failed")
exit(-1)
########################
### Step 4
########################
model_pkls = ",".join([ f'{args.output_dir}/result_model_{i}_multimer.pkl.gz' for i in range(1,6) ])
if args.skip_refine:
model_pdbs = ",".join([ f'{args.output_dir}/unrelaxed_model_{i}_multimer.pdb' for i in range(1,6) ])
else:
model_pdbs = ",".join([ f'{args.output_dir}/relaxed_model_{i}_multimer.pdb' for i in range(1,6) ])
cmd = f"python {step4_file} {model_pkls} {model_pdbs} {args.output_dir}"
print("Run Step 4: Sort models")
if os.system(cmd) != 0:
print("Step 4 Failed")
exit(-1)