forked from happynear/FaceVerification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReadFeatureLFW.m
80 lines (76 loc) · 2.51 KB
/
ReadFeatureLFW.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
caffe.reset_all();
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
% ROIx = 19:82;
% ROIy = 19:82;
ROIx = 1:100;
ROIy = 1:100;
% ROIx = 1:64;
% ROIy = 1:64;
height = length(ROIx);
width = length(ROIy);
allPairs = [same_pair;diff_pair];
meanC = caffe.read_mean('D:\ThirdPartyLibrary\caffe\examples\siamese\mean.proto');
net = caffe.Net('D:\ThirdPartyLibrary\caffe\examples\siamese\96.8\CASIA_deploy.prototxt','D:\ThirdPartyLibrary\caffe\examples\siamese\96.8\siamese_iter_500000.caffemodel', 'test');
% meanC = caffe.read_mean('C:\Users\feng\Documents\Tencent Files\438797086\FileRecv\meanfile');
% net = caffe.Net('C:\Users\feng\Documents\Tencent Files\438797086\FileRecv\deep_ID1.prototxt','C:\Users\feng\Documents\Tencent Files\438797086\FileRecv\DP__iter_120000.caffemodel','test');
num = size(allPairs,1);
AllFeature1 = zeros(320,num);
AllFeature2 = zeros(320,num);
for i = 1 : floor(num/100)
disp([i floor(num/100)]);
J = zeros(height,width,1,100,'single');
for j = 1 : 100
I = imread(allPairs{(i-1)*100+j,1});
I = single(I') - meanC;
I = I(ROIx,ROIy);
J(:,:,1,j) = I/128;
% J(:,:,1,j) = I(end:-1:1,:);
end;
H={J};
f = net.forward(H);
f = f{1};
AllFeature1(:,(i-1)*100+1:i*100) = reshape(f,[size(AllFeature1,1),100]);
% layer_conv52 = net.blob_vec(net.name2blob_index('pool5'));
% conv52 = layer_conv52.get_data();
% sum(conv52(:)>0) /320/100
end;
J = zeros(height,width,1,100,'single');
for j = 1 : num - floor(num/100) * 100
I = imread(allPairs{floor(num/100) * 100+j,1});
I = single(I') - meanC;
I = I(ROIx,ROIy);
J(:,:,1,j) = I/128;
end;
H={J};
f = net.forward(H);
f=f{1};
f = squeeze(f);
AllFeature1(:,floor(num/100) * 100+1:num) = f(:,1 : num - floor(num/100) * 100);
for i = 1 : floor(num/100)
disp([i floor(num/100)]);
J = zeros(height,width,1,100,'single');
for j = 1 : 100
I = imread(allPairs{(i-1)*100+j,2});
I = single(I') - meanC;
I = I(ROIx,ROIy);
J(:,:,1,j) = I/128;
end;
H={J};
f = net.forward(H);
f = f{1};
AllFeature2(:,(i-1)*100+1:i*100) = reshape(f,[size(AllFeature2,1),100]);
end;
J = zeros(height,width,1,100,'single');
for j = 1 : num - floor(num/100) * 100
I = imread(allPairs{floor(num/100) * 100+j,2});
I = single(I') - meanC;
I = I(ROIx,ROIy);
J(:,:,1,j) = I/128;
end;
H={J};
f = net.forward(H);
f=f{1};
f = squeeze(f);
AllFeature2(:,floor(num/100) * 100+1:num) = f(:,1 : num - floor(num/100) * 100);