forked from happynear/FaceVerification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_lfw_restrict.m
104 lines (96 loc) · 3.58 KB
/
test_lfw_restrict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
load('E:\datasets\WDRef\id_lfw.mat');
load('E:\datasets\WDRef\imagelist_lfw.mat');
load('E:\datasets\WDRef\lbp_lfw.mat');
load('E:\datasets\WDRef\pairlist_lfw.mat');
% labels = double(train_y) * (0:9)';
labels = id_lfw;
X = double(lbp_lfw);
idx = [];
validate = 1;
tmp = pairlist_lfw.IntraPersonPair;
tmp((validate-1)*300+1:validate*300,:) = [];
idx = [idx;tmp(:)];
tmp = pairlist_lfw.ExtraPersonPair;
tmp((validate-1)*300+1:validate*300,:) = [];
idx = [idx;tmp(:)];
idx = unique(idx);
train_x = X(idx,:);
train_y = id_lfw(idx);
train_mean = mean(train_x, 1);
[COEFF,SCORE] = princomp(train_x,'econ');
train_x = SCORE(:,1:400);
normX = bsxfun(@minus,X,train_mean);
normX = normX * COEFF;
normX = normX(:,1:400);
[mappedX, mapping] = JointBayesian(train_x, train_y);
% [mappedX, mapping] = JointBayesian(X, labels);
% ss = X(1,:) * mapping.A * X(1,:)' + X(10,:) * mapping.A * X(10,:)' - 2 * X(1,:) * mapping.G * X(10,:)';
% CD = u(:,7)' * COEFF(:,1:400)';
% CD = CD + mapping.mean;
% imshow(CD);
% imshow(uint8(CD));
% imshow(reshape(uint8(CD),28,28)');
% validate = 2;
validate = 1;
test_Intra = pairlist_lfw.IntraPersonPair((validate-1)*300+1:validate*300,:);
test_Extra = pairlist_lfw.ExtraPersonPair((validate-1)*300+1:validate*300,:);
result_Intra = zeros(300,1);
result_Extra = zeros(300,1);
for i=1:300
result_Intra(i) = normX(test_Intra(i,1),:) * mapping.A * normX(test_Intra(i,1),:)' + normX(test_Intra(i,2),:) * mapping.A * normX(test_Intra(i,2),:)' - 2 * normX(test_Intra(i,1),:) * mapping.G * normX(test_Intra(i,2),:)';
result_Extra(i) = normX(test_Extra(i,1),:) * mapping.A * normX(test_Extra(i,1),:)' + normX(test_Extra(i,2),:) * mapping.A * normX(test_Extra(i,2),:)' - 2 * normX(test_Extra(i,1),:) * mapping.G * normX(test_Extra(i,2),:)';
end;
% tmp = [pairlist_lfw.IntraPersonPair((validate-1)*300+1:validate*300,:);pairlist_lfw.ExtraPersonPair((validate-1)*300+1:validate*300,:)];
% idx = unique(tmp(:));
m = size(train_x,1);
n = size(train_x,2);
% Make sure labels are nice
[classes, bar, train_y] = unique(train_y);
nc = length(classes);
% Intialize Sw
Sw = zeros(size(train_x, 2), size(train_x, 2));
cur = {};
withinCount = 0;
for i=1:nc
% Get all instances with class i
cur{i} = train_x(train_y == i,:);
if size(cur{i},1)>1
withinCount = withinCount + size(cur{i},1);
end;
end;
u = zeros(n,nc);
% Sum over classes
for i=1:nc
% Update within-class scatter
u(:,i) = mean(cur{i},1)';
if size(cur{i},1)>1
C = cov(cur{i});
p = size(cur{i}, 1) / (withinCount - 1);
Sw = Sw + (p * C);
end;
end;
Su = cov(u');
F = inv(Sw);
G = -1 .* (2 .* Su + Sw) \ Su / Sw;
A = inv(Su + Sw) - (F + G);
c = zeros(m,1);
for i = 1:m
c(i) = train_x(i,:) * A * train_x(i,:)';
end;
result_Intra = zeros(300,1);
result_Extra = zeros(300,1);
for i=1:300
result_Intra(i) = normX(test_Intra(i,1),:) * A * normX(test_Intra(i,1),:)' + normX(test_Intra(i,2),:) * A * normX(test_Intra(i,2),:)' - 2 * normX(test_Intra(i,1),:) * G * normX(test_Intra(i,2),:)';
result_Extra(i) = normX(test_Extra(i,1),:) * A * normX(test_Extra(i,1),:)' + normX(test_Extra(i,2),:) * A * normX(test_Extra(i,2),:)' - 2 * normX(test_Extra(i,1),:) * G * normX(test_Extra(i,2),:)';
end;
% MM = X * G *X';
% DIS = repmat(c,1,length(c))+repmat(c,1,length(c))' - 2*MM;
% GT = zeros(m,m);
% for i = 1:m
% for j=1:m
% GT(i,j) = id_lfw(i)==id_lfw(j);
% end;
% end;
% ER = (GT ~= (DIS>=0));
% totalER = sum(sum(abs(ER*DIS)));
% sumER = sum(sum(ER));