-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathseries_sc_dream_2.py
146 lines (120 loc) · 4.34 KB
/
series_sc_dream_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
'''
Uses pretrained VAE to process dataset to get mu and logvar for each frame, and stores
all the dataset files into one dataset called series/series.npz
'''
import numpy as np
import os
import json
import tensorflow as tf
import random
import gc
from rnn.rnn_dream import reset_graph, ConvVAE
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="7"
ITERATION_INDEX = "2"
DATA_DIR = "record_img_dream" + "_" + ITERATION_INDEX
SERIES_DIR = "series_dream" + "_" + ITERATION_INDEX
model_path_name = "tf_models" + "_" + ITERATION_INDEX
IN_CHANNELS = 12
# Hyperparameters for ConvVAE
z_size=64
file_size=3000
batch_size=300 # use 100 instead # treat every episode as a batch of 1000!
learning_rate=0.0001
kl_tolerance=0.5 #0.5
if not os.path.exists(SERIES_DIR):
os.makedirs(SERIES_DIR)
def append_dim(data, l, batch_size):
l = data.shape[0]
print('l:', l)
print('shape', data.shape[1:])
new_shape = (batch_size,) + data.shape[1:]
print('new shape:', new_shape)
new_data = np.zeros(new_shape)
print('new_data.shape', new_data.shape)
new_data[:l,] = data
return new_data
def load_raw_data_list(filelist):
obs_list = []
img_list = []
action_list = []
reward_list = []
counter = 0
for i in range(len(filelist)):
filename = filelist[i]
try:
raw_data = np.load(os.path.join(DATA_DIR, filename))
except:
continue
#print(filename)
if filename == '1594098046.npz' or len(filename.split('.')) > 2:
print('Match!')
else:
print(filename)
l = raw_data['obs'].shape[0]
if l < batch_size:
l = raw_data['obs'].shape[0]
new_obs = append_dim(raw_data['obs'], l, batch_size)
new_img = append_dim(raw_data['img'], l, batch_size)
new_action = append_dim(raw_data['action'], l, batch_size)
new_reward = append_dim(raw_data['reward'], l, batch_size)
print('shape:', raw_data['obs'][:batch_size].shape)
if random.random() < 0.5:
obs_list.append(new_obs[:batch_size])
img_list.append(new_img[:batch_size])
action_list.append(new_action[:batch_size])
reward_list.append(new_reward[:batch_size])
else:
obs_list.append(new_obs[-batch_size:])
img_list.append(new_img[-batch_size:])
action_list.append(new_action[-batch_size:])
reward_list.append(new_reward[-batch_size:])
#print('raw_data[action].shape:', raw_data['action'].shape)
if ((i+1) % 1000 == 0):
print("loading file", (i+1))
print("collect carbige", gc.collect())
gc.collect()
return obs_list, img_list, action_list, reward_list
def encode_batch(batch_img):
simple_obs = np.copy(batch_img).astype(np.float)
simple_obs = simple_obs.reshape(-1, 64, 64, IN_CHANNELS)
#print('simple_obs.shape:', simple_obs.shape)
mu, logvar = vae.encode_mu_logvar(simple_obs)
z = (mu + np.exp(logvar/2.0) * np.random.randn(*logvar.shape))
return mu, logvar, z
def decode_batch(batch_z):
# decode the latent vector
batch_img = vae.decode(z.reshape(batch_size, z_size))
#batch_img = np.round(batch_img).astype(np.uint8)
batch_img = batch_img.reshape(batch_size, 64, 64, IN_CHANNELS)
return batch_img
filelist = os.listdir(DATA_DIR)
filelist.sort()
filelist = filelist[0:file_size]
obs_dataset, img_list, action_dataset, reward_dataset = load_raw_data_list(filelist)
gc.collect()
reset_graph()
vae = ConvVAE(z_size=z_size,
batch_size=batch_size,
learning_rate=learning_rate,
kl_tolerance=kl_tolerance,
is_training=False,
reuse=False,
gpu_mode=True) # use GPU on batchsize of 1000 -> much faster
vae.load_json(os.path.join(model_path_name, 'vae.json'))
mu_dataset = []
logvar_dataset = []
for i in range(len(img_list)):
data_batch = img_list[i]
mu, logvar, z = encode_batch(data_batch)
mu_dataset.append(mu.astype(np.float16))
logvar_dataset.append(logvar.astype(np.float16))
if ((i+1) % 100 == 0):
print(i+1)
action_dataset = np.array(action_dataset)
obs_dataset = np.array(obs_dataset)
mu_dataset = np.array(mu_dataset)
logvar_dataset = np.array(logvar_dataset)
reward_dataset = np.array(reward_dataset)
np.savez_compressed(os.path.join(SERIES_DIR, "series.npz"), action=action_dataset, obs=obs_dataset,
mu=mu_dataset, logvar=logvar_dataset, reward=reward_dataset)