-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_in_dream.py
252 lines (196 loc) · 8.46 KB
/
train_in_dream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
USED_DEVICES = "7"
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = USED_DEVICES
import sys
import threading
import time
import tensorflow as tf
import multiprocessing as mp
import numpy as np
from logging import warning as logging
from datetime import datetime
from mini_network_dream import MiniNetwork
from dream_agent import MiniAgent
from rnn.rnn_dream import ScRNNEnv
from lib.replay_buffer import Buffer
from absl import app
from absl import flags
FLAGS = flags.FLAGS
flags.DEFINE_string("restore_model_path", "./model/20190121-210229_dream/", "path for restore model")
flags.DEFINE_bool("restore_model", False, "Whether to restore old model")
flags.DEFINE_integer("num_for_update", 500, "How many episodes for one iteration")
flags.DEFINE_integer("parallel", 10, "How many process to run, debug set to 1, training set to 10")
flags.DEFINE_integer("thread_num", 5, "How many threads in one process, debug set to 1, training set to 5")
flags.DEFINE_integer("port_num", 5570, "Port number for distribute training in tensorflow")
flags.DEFINE_integer("train_iters", 100, "How many iterations for one training")
flags.DEFINE_integer("initial_diff", 1, "The start level of opponent in mind-game")
flags.DEFINE_float("win_rate_threshold", 0.95, "If win_rate exceeds this value, opponent level increase one")
flags.DEFINE_bool("show_details", False, "Weather to show details of one mind-game, debug set to True, training set to False")
flags.DEFINE_string("type", "dream", "model type")
FLAGS(sys.argv)
# define some global variable
UPDATE_EVENT, ROLLING_EVENT = threading.Event(), threading.Event()
Counter = 0
Waiting_Counter = 0
Update_Counter = 0
Result_List = []
SERVER_DICT = {"worker": [], "ps": []}
env_save_path = "tf_models"
NUM_FOR_UPDATE = FLAGS.num_for_update
PARALLEL = FLAGS.parallel
THREAD_NUM = FLAGS.thread_num
PORT_NUM = FLAGS.port_num
TRAIN_ITERS = FLAGS.train_iters
INITIAL_DIFF = FLAGS.initial_diff
WIN_RATE_THRESHOLD = FLAGS.win_rate_threshold
SHOW_DETAILS = FLAGS.show_details
#ENV = ScRNNEnv()
def run_thread(agent, game_num, Synchronizer, difficulty):
global UPDATE_EVENT, ROLLING_EVENT, Counter, Waiting_Counter, Update_Counter, Result_List
num = 0
proc_name = mp.current_process().name
env = ScRNNEnv(env_path_name=env_save_path)
#env = ENV
agent.set_env(env)
while True:
agent.play(SHOW_DETAILS)
if True:
# check if the num of episodes is enough to update
num += 1
Counter += 1
reward = agent.result
Result_List.append(reward)
logging("(diff: %d) %d epoch: %s get %d/%d episodes! return: %f!" %
(int(difficulty), Update_Counter, proc_name, len(Result_List), game_num * THREAD_NUM, reward))
# time for update
if num == game_num:
num = 0
ROLLING_EVENT.clear()
# worker stops rolling, wait for update
if agent.agent_id != 0 and THREAD_NUM > 1:
Waiting_Counter += 1
if Waiting_Counter == THREAD_NUM - 1: # wait for all the workers stop
UPDATE_EVENT.set()
ROLLING_EVENT.wait()
# update!
else:
if THREAD_NUM > 1:
UPDATE_EVENT.wait()
Synchronizer.wait() # wait for other processes to update
agent.update_network(Result_List)
Result_List.clear()
agent.global_buffer.reset()
Synchronizer.wait()
Update_Counter += 1
# finish update
UPDATE_EVENT.clear()
Waiting_Counter = 0
ROLLING_EVENT.set()
agent.reset()
def Worker(index, update_game_num, Synchronizer, cluster, model_path):
config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False,
)
config.gpu_options.allow_growth = True
worker = tf.train.Server(cluster, job_name="worker", task_index=index, config=config)
#config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess = tf.Session(target=worker.target, config=config)
mini_net = MiniNetwork(sess, index=index, summary_writer=None, rl_training=True, cluster=cluster,
ppo_load_path=FLAGS.restore_model_path, ppo_save_path=model_path)
global_buffer = Buffer()
agents = []
for i in range(THREAD_NUM):
agent = MiniAgent(agent_id=i, global_buffer=global_buffer, net=mini_net, restore_model=FLAGS.restore_model)
agents.append(agent)
print("Worker %d: waiting for cluster connection..." % index)
sess.run(tf.report_uninitialized_variables())
print("Worker %d: cluster ready!" % index)
while len(sess.run(tf.report_uninitialized_variables())):
print("Worker %d: waiting for variable initialization..." % index)
time.sleep(1)
print("Worker %d: variables initialized" % index)
game_num = np.ceil(update_game_num // THREAD_NUM)
UPDATE_EVENT.clear()
ROLLING_EVENT.set()
difficulty = INITIAL_DIFF
# Run threads
threads = []
for i in range(THREAD_NUM - 1):
t = threading.Thread(target=run_thread, args=(agents[i], game_num, Synchronizer, difficulty))
threads.append(t)
t.daemon = True
t.start()
time.sleep(3)
run_thread(agents[-1], game_num, Synchronizer, difficulty)
for t in threads:
t.join()
def Parameter_Server(Synchronizer, cluster, log_path, model_path, procs):
config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False,
)
config.gpu_options.allow_growth = True
server = tf.train.Server(cluster, job_name="ps", task_index=0, config=config)
#config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess = tf.Session(target=server.target, config=config)
summary_writer = tf.summary.FileWriter(log_path)
mini_net = MiniNetwork(sess, index=0, summary_writer=summary_writer, rl_training=True, cluster=cluster,
ppo_load_path=FLAGS.restore_model_path, ppo_save_path=model_path)
agent = MiniAgent(agent_id=-1, global_buffer=Buffer(), net=mini_net, restore_model=FLAGS.restore_model)
print("Parameter server: waiting for cluster connection...")
sess.run(tf.report_uninitialized_variables())
print("Parameter server: cluster ready!")
print("Parameter server: initializing variables...")
agent.init_network()
print("Parameter server: variables initialized")
last_win_rate = 0.
update_counter = 0
while update_counter <= TRAIN_ITERS:
agent.reset_old_network()
# wait for update
Synchronizer.wait()
logging("Update Network!")
# TODO count the time , compare cpu and gpu
time.sleep(1)
# update finish
Synchronizer.wait()
logging("Update Network finished!")
steps, win_rate = agent.update_summary(update_counter)
logging("Steps: %d, win rate: %f" % (steps, win_rate))
update_counter += 1
if win_rate >= last_win_rate:
agent.save_model()
last_win_rate = win_rate
for p in procs:
print('Process terminate')
p.terminate()
if __name__ == "__main__":
# create distribute tf cluster
start_port = PORT_NUM
SERVER_DICT["ps"].append("localhost:%d" % start_port)
for i in range(PARALLEL):
SERVER_DICT["worker"].append("localhost:%d" % (start_port + 1 + i))
Cluster = tf.train.ClusterSpec(SERVER_DICT)
now = datetime.now()
model_path = "./model/" + now.strftime("%Y%m%d-%H%M%S") + "_" + FLAGS.type + "/"
if not os.path.exists(model_path):
os.makedirs(model_path)
LOG = "./logs/" + now.strftime("%Y%m%d-%H%M%S") + "_" + FLAGS.type + "/"
UPDATE_GAME_NUM = NUM_FOR_UPDATE
per_update_num = np.ceil(UPDATE_GAME_NUM / PARALLEL)
Synchronizer = mp.Barrier(PARALLEL + 1)
# Run parallel process
procs = []
for index in range(PARALLEL):
p = mp.Process(name="Worker_%d" % index, target=Worker, args=(index, per_update_num, Synchronizer, Cluster, model_path))
procs.append(p)
p.daemon = True
p.start()
time.sleep(1)
Parameter_Server(Synchronizer, Cluster, LOG, model_path, procs)
# for p in procs:
# print('Process join')
# p.join()