-
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathPINNS2.py
293 lines (249 loc) · 9.89 KB
/
PINNS2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from ImportFile import *
pi = math.pi
torch.manual_seed(42)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
def initialize_inputs(len_sys_argv):
if len_sys_argv == 1:
# Random Seed for sampling the dataset
sampling_seed_ = 32
# Number of training+validation points
n_coll_ = 8192
n_u_ = 120
n_int_ = 4096
# Only for Navier Stokes
n_object = 0
ob = None
# Additional Info
folder_path_ = "Inverse"
point_ = "sobol"
validation_size_ = 0.0
network_properties_ = {
"hidden_layers": 4,
"neurons": 20,
"residual_parameter": 1,
"kernel_regularizer": 2,
"regularization_parameter": 0,
"batch_size": (n_coll_ + n_u_ + n_int_),
"epochs": 1,
"activation": "tanh"
}
retrain_ = 32
shuffle_ = False
elif len_sys_argv == 17:
print(sys.argv)
# Random Seed for sampling the dataset
sampling_seed_ = int(sys.argv[1])
# Number of training+validation points
n_coll_ = int(sys.argv[2])
n_u_ = int(sys.argv[3])
n_int_ = int(sys.argv[4])
# Only for Navier Stokes
n_object = int(sys.argv[5])
if sys.argv[6] == "None":
ob = None
else:
ob = sys.argv[6]
# Additional Info
folder_path_ = sys.argv[7]
point_ = sys.argv[8]
validation_size_ = float(sys.argv[9])
network_properties_ = json.loads(sys.argv[10])
retrain_ = sys.argv[11]
if sys.argv[12] == "false":
shuffle_ = False
else:
shuffle_ = True
else:
raise ValueError("One input is missing")
return sampling_seed_, n_coll_, n_u_, n_int_, n_object, ob, folder_path_, point_, validation_size_, network_properties_, retrain_, shuffle_
sampling_seed, N_coll, N_u, N_int, N_object, Ob, folder_path, point, validation_size, network_properties, retrain, shuffle = initialize_inputs(len(sys.argv))
if Ec.extrema_values is not None:
extrema = Ec.extrema_values
space_dimensions = Ec.space_dimensions
time_dimension = Ec.time_dimensions
parameter_dimensions = Ec.parameter_dimensions
print(space_dimensions, time_dimension, parameter_dimensions)
else:
print("Using free shape. Make sure you have the functions:")
print(" - add_boundary(n_samples)")
print(" - add_collocation(n_samples)")
print("in the Equation file")
extrema = None
space_dimensions = Ec.space_dimensions
time_dimension = Ec.time_dimensions
try:
parameters_values = Ec.parameters_values
parameter_dimensions = parameters_values.shape[0]
type_point_param = Ec.type_of_points
except AttributeError:
print("No additional parameter found")
parameters_values = None
parameter_dimensions = 0
type_point_param = None
input_dimensions = parameter_dimensions + time_dimension + space_dimensions
output_dimension = Ec.output_dimension
print(input_dimensions)
mode = "none"
max_iter = 50000
if network_properties["epochs"] != 1:
max_iter = 1
if Ob == "cylinder":
solid_object = ObjectClass.Cylinder(N_object, 1, input_dimensions, time_dimension, extrema, 1, 0, 0)
elif Ob == "square":
solid_object = ObjectClass.Square(N_object, 1, input_dimensions, time_dimension, extrema, 2, 2, 0, 0)
else:
solid_object = None
print("######################################")
print("*******Domain Properties********")
print(extrema)
print(input_dimensions)
N_u_train = int(N_u * (1 - validation_size))
N_coll_train = int(N_coll * (1 - validation_size))
N_int_train = int(N_int * (1 - validation_size))
N_object_train = int(N_object * (1 - validation_size))
N_train = N_u_train + N_coll_train + N_int_train + N_object_train
N_u_val = N_u - N_u_train
N_coll_val = N_coll - N_coll_train
N_int_val = N_int - N_int_train
N_object_val = N_object - N_object_train
N_val = N_u_val + N_coll_val + N_int_val + N_object_val
if space_dimensions > 0:
N_b_train = int(N_u_train / (4 * space_dimensions))
else:
N_b_train = 0
if time_dimension == 1:
N_i_train = N_u_train - 2 * space_dimensions * N_b_train
elif time_dimension == 0:
N_b_train = int(N_u_train / (2 * space_dimensions))
N_i_train = 0
else:
raise ValueError()
if space_dimensions > 1:
N_b_val = int(N_u_val / (4 * space_dimensions))
else:
N_b_val = 0
if time_dimension == 1:
N_i_val = N_u_val - 2 * space_dimensions * N_b_val
elif time_dimension == 0:
N_i_val = 0
else:
raise ValueError()
print("\n######################################")
print("*******Info Training Points********")
print("Number of train collocation points: ", N_coll_train)
print("Number of initial and boundary points: ", N_u_train, N_i_train, N_b_train)
print("Number of internal points: ", N_int_train)
print("Total number of training points: ", N_train)
print("\n######################################")
print("*******Info Validation Points********")
print("Number of train collocation points: ", N_coll_val)
print("Number of initial and boundary points: ", N_u_val)
print("Number of internal points: ", N_int_val)
print("Total number of training points: ", N_val)
print("\n######################################")
print("*******Network Properties********")
pprint.pprint(network_properties)
batch_dim = network_properties["batch_size"]
print("\n######################################")
print("*******Parameter Dimension********")
print(parameter_dimensions)
if batch_dim == "full":
batch_dim = N_train
# ##############################################################################################
# Datasets Creation
print("DIMENSION")
print(space_dimensions, time_dimension, parameter_dimensions)
training_set_class = DefineDataset(extrema,
parameters_values,
point,
N_coll_train,
N_b_train,
N_i_train,
N_int_train,
batches=batch_dim,
output_dimension=output_dimension,
space_dimensions=space_dimensions,
time_dimensions=time_dimension,
parameter_dimensions=parameter_dimensions,
random_seed=sampling_seed,
obj=solid_object,
shuffle=shuffle,
type_point_param=type_point_param)
training_set_class.assemble_dataset()
training_set_no_batches = training_set_class.data_no_batches
validation_set_class = None
additional_models = None
model = Pinns(input_dimension=input_dimensions, output_dimension=output_dimension,
network_properties=network_properties, additional_models=additional_models)
torch.manual_seed(retrain)
init_xavier(model)
if torch.cuda.is_available():
print("Loading model on GPU")
model.cuda()
start = time.time()
print("Fitting Model")
model.train()
epoch_ADAM = model.num_epochs - 1
# ##############################################################################################
# Model Training
optimizer_LBFGS = optim.LBFGS(model.parameters(), lr=0.8, max_iter=max_iter, max_eval=50000, history_size=100,
line_search_fn="strong_wolfe",
tolerance_change=1.0 * np.finfo(float).eps) # 1.0 * np.finfo(float).eps
optimizer_ADAM = optim.Adam(model.parameters(), lr=0.00005)
if N_coll_train != 0:
final_error_train = fit(model, optimizer_ADAM, optimizer_LBFGS, epoch_ADAM, training_set_class, validation_set_clsss=validation_set_class, verbose=True,
training_ic=False)
else:
final_error_train = StandardFit(model, optimizer_ADAM, optimizer_LBFGS, training_set_class, validation_set_clsss=validation_set_class, verbose=True)
end = time.time() - start
print("\nTraining Time: ", end)
model = model.eval()
final_error_train = float(((10 ** final_error_train) ** 0.5).detach().cpu().numpy())
print("\n################################################")
print("Final Training Loss:", final_error_train)
print("################################################")
final_error_val = None
final_error_test = 0
# ##############################################################################################
# Plotting ang Assessing Performance
images_path = folder_path + "/Images"
os.mkdir(folder_path)
os.mkdir(images_path)
model_path = folder_path + "/TrainedModel"
os.mkdir(model_path)
L2_test, rel_L2_test = Ec.compute_generalization_error(model, extrema, images_path)
Ec.plotting(model, images_path, extrema, solid_object)
end_plotting = time.time() - end
print("\nPlotting and Computing Time: ", end_plotting)
torch.save(model, model_path + "/model.pkl")
with open(model_path + os.sep + "Information.csv", "w") as w:
keys = list(network_properties.keys())
vals = list(network_properties.values())
w.write(keys[0])
for i in range(1, len(keys)):
w.write("," + keys[i])
w.write("\n")
w.write(str(vals[0]))
for i in range(1, len(vals)):
w.write("," + str(vals[i]))
with open(folder_path + '/InfoModel.txt', 'w') as file:
file.write("Nu_train,"
"Nf_train,"
"Nint_train,"
"validation_size,"
"train_time,"
"L2_norm_test,"
"rel_L2_norm,"
"error_train,"
"error_val,"
"error_test\n")
file.write(str(N_u_train) + "," +
str(N_coll_train) + "," +
str(N_int_train) + "," +
str(validation_size) + "," +
str(end) + "," +
str(L2_test) + "," +
str(rel_L2_test) + "," +
str(final_error_train) + "," +
str(final_error_val) + "," +
str(final_error_test))