-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_hand_shape_fw.py
103 lines (82 loc) · 3.93 KB
/
run_hand_shape_fw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
""" Run forward pass on trained hand shape estimation network. """
import matplotlib
matplotlib.use('Agg')
from collections import defaultdict
import argparse
import torch
import torch.nn as nn
import glob
import numpy as np
import cv2
import time, os, json
import matplotlib.pyplot as plt
from tqdm import tqdm
from utils.plot_util import draw_hand
from utils.rendering import render_verts_faces
from manopth.manolayer import ManoLayer
from nets.ResNet import resnet50
from utils.img_util import downsample
from utils.mano_utils import apply_scaling, pred_to_mano, project
from utils.general import load_ckpt, json_load
class ManoPredictor(nn.Module):
def __init__(self):
super().__init__()
self.model = resnet50(pretrained=False, head_type='mano')
self.mano = ManoLayer(use_pca=False, ncomps=45, flat_hand_mean=False, center_idx=9)
def forward(self, image_np, K_np, device='cpu'):
assert image_np.shape == (224, 224, 3), 'Image shape mismatch.'
img = np.transpose(image_np[:, :, ::-1], [2, 0, 1]).astype(np.float32) / 255.0 - 0.5
img = np.expand_dims(img, 0)
theta_p = self.model(
torch.Tensor(img).to(device)
)
theta_p = apply_scaling(theta_p)
poses, shapes, global_t = pred_to_mano(theta_p,
torch.Tensor(K_np[None]).to(device)
)
verts_p, xyz_p = self.mano(poses, shapes, global_t)
uv_p = project(xyz_p, torch.Tensor(K_np[None]).to(device))
verts_p_np = verts_p.detach().cpu().numpy()[0]
xyz_p_np = xyz_p.detach().cpu().numpy()[0]
uv_p_np = uv_p.detach().cpu().numpy()[0]
img_shape = np.array([[image_np.shape[0], image_np.shape[1]]])
mask_p, _ = render_verts_faces(verts_p,
self.mano.th_faces[None],
K_np[None], np.eye(4)[None], img_shape)
mask_np = mask_p[0].detach().cpu().numpy()[0].transpose([1, 2, 0])
return verts_p_np, xyz_p_np, uv_p_np, mask_np
def main():
parser = argparse.ArgumentParser()
parser.add_argument('hanco_path', type=str, help='Path to where HanCo dataset is stored.')
parser.add_argument('--sid', type=int, help='Sequence ID.', default=110)
parser.add_argument('--cid', type=int, help='Camera ID.', default=3)
parser.add_argument('--fid', type=int, help='Frame ID.', default=0)
args = parser.parse_args()
assert os.path.exists(args.hanco_path), 'Path to HanCo not found.'
assert os.path.isdir(args.hanco_path), 'Path to HanCo doesnt seem to be a directory.'
img_path = os.path.join(args.hanco_path, f'rgb/{args.sid:04d}/cam{args.cid}/{args.fid:08d}.jpg')
calib_path = os.path.join(args.hanco_path, f'calib/{args.sid:04d}/{args.fid:08d}.json')
assert os.path.exists(img_path), f'Image not found: {img_path}'
assert os.path.exists(calib_path), f'Calibration not found: {calib_path}'
img = cv2.imread(img_path)
K = np.array(json_load(calib_path)['K'][3])
# Load network
model = ManoPredictor()
state_dict = torch.load('ckpt/model_mano.pth')
model.load_state_dict(state_dict, strict=False)
model.cuda()
model.eval()
# forward pass
with torch.no_grad():
verts_xyz_p, joints_xyz_p, joints_uv_p, mask_p = model.forward(img, K, 'cuda')
# vis rgb image with predicted skeleton
img_vis = draw_hand(img.copy(), joints_uv_p, kp_style=(2, 1), order='uv', img_order='bgr')
# vis rendered mask with predicted skeleton
mask_p = np.clip(mask_p*255, 0, 255).astype(np.uint8)
mask_vis = draw_hand(mask_p.copy(), joints_uv_p, kp_style=(2, 1), order='uv', img_order='bgr')
fig, ax = plt.subplots(1, 2)
ax[0].imshow(img_vis[:, :, ::-1]), ax[0].set_title('rgb+pred skel')
ax[1].imshow(mask_vis[:, :, ::-1]), ax[1].set_title('pred shape+skel')
plt.show()
if __name__ == '__main__':
main()