forked from IsaiahPressman/Kaggle_Lux_AI_2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_monobeast.py
101 lines (82 loc) · 3.36 KB
/
run_monobeast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from contextlib import redirect_stdout
import io
# Silence "Loading environment football failed: No module named 'gfootball'" message
with redirect_stdout(io.StringIO()):
import kaggle_environments
import hydra
import logging
import os
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from torch import multiprocessing as mp
import wandb
from lux_ai.utils import flags_to_namespace
from lux_ai.torchbeast.monobeast import train
os.environ["OMP_NUM_THREADS"] = "1"
logging.basicConfig(
format=(
"[%(levelname)s:%(process)d %(module)s:%(lineno)d %(asctime)s] " "%(message)s"
),
level=0,
)
def get_default_flags(flags: DictConfig) -> DictConfig:
flags = OmegaConf.to_container(flags)
# Env params
flags.setdefault("seed", None)
flags.setdefault("num_buffers", max(2 * flags["num_actors"], flags["batch_size"] // flags["n_actor_envs"]))
flags.setdefault("obs_space_kwargs", {})
flags.setdefault("reward_space_kwargs", {})
# Training params
flags.setdefault("use_mixed_precision", True)
flags.setdefault("discounting", 0.999)
flags.setdefault("reduction", "mean")
flags.setdefault("clip_grads", 10.)
flags.setdefault("checkpoint_freq", 10.)
flags.setdefault("num_learner_threads", 1)
flags.setdefault("use_teacher", False)
flags.setdefault("teacher_baseline_cost", flags.get("teacher_kl_cost", 0.) / 2.)
# Model params
flags.setdefault("use_index_select", True)
if flags.get("use_index_select"):
logging.info("index_select disables padding_index and is equivalent to using a learnable pad embedding.")
# Reloading previous run params
flags.setdefault("load_dir", None)
flags.setdefault("checkpoint_file", None)
flags.setdefault("weights_only", False)
flags.setdefault("n_value_warmup_batches", 0)
# Miscellaneous params
flags.setdefault("disable_wandb", False)
flags.setdefault("debug", False)
return OmegaConf.create(flags)
@hydra.main(config_path="conf", config_name="resume_config")
def main(flags: DictConfig):
cli_conf = OmegaConf.from_cli()
if Path("config.yaml").exists():
new_flags = OmegaConf.load("config.yaml")
flags = OmegaConf.merge(new_flags, cli_conf)
if flags.get("load_dir", None) and not flags.get("weights_only", False):
# this ignores the local config.yaml and replaces it completely with saved one
# however, you can override parameters from the cli still
# this is useful e.g. if you did total_steps=N before and want to increase it
logging.info("Loading existing configuration, we're continuing a previous run")
new_flags = OmegaConf.load(Path(flags.load_dir) / "config.yaml")
# Overwrite some parameters
new_flags = OmegaConf.merge(new_flags, flags)
flags = OmegaConf.merge(new_flags, cli_conf)
flags = get_default_flags(flags)
logging.info(OmegaConf.to_yaml(flags, resolve=True))
OmegaConf.save(flags, "config.yaml")
if not flags.disable_wandb:
wandb.init(
config=vars(flags),
project=flags.project,
entity=flags.entity,
group=flags.group,
name=flags.name,
)
flags = flags_to_namespace(OmegaConf.to_container(flags))
mp.set_sharing_strategy(flags.sharing_strategy)
train(flags)
if __name__ == "__main__":
mp.set_start_method("spawn")
main()