forked from GT-RIPL/L2C
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
295 lines (250 loc) · 12.7 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import sys
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from torch.optim.lr_scheduler import MultiStepLR
from learners.classification import Learner_Classification
from learners.clustering import Learner_Clustering
from learners.similarity import Learner_DensePairSimilarity
from utils.metric import Confusion, Timer, AverageMeter
from modules.pairwise import Class2Simi
import modules.criterion
def prepare_task_target(input, target, args):
# Prepare the target for different criterion/tasks
if args.loss == 'CE': # For standard classification
train_target = eval_target = target
elif args.loss in ['KCL', 'MCL']: # For clustering
if args.use_SPN: # For unsupervised clustering
# Feed the input to SPN to get predictions
_, train_target = args.SPN(input).max(1) # Binaries the predictions
train_target = train_target.float()
train_target[train_target==0] = -1 # Simi:1, Dissimi:-1
else: # For supervised clustering
# Convert class labels to pairwise similarity
train_target = Class2Simi(target, mode='hinge')
eval_target = target
elif args.loss == 'DPS': # For learning the SPN
train_target = eval_target = Class2Simi(target, mode='cls')
else:
assert False,'Unsupported loss:'+args.loss
return train_target.detach(), eval_target.detach() # Make sure no gradients
def train(epoch, train_loader, learner, args):
# This function optimize the objective
# Initialize all meters
data_timer = Timer()
batch_timer = Timer()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
confusion = Confusion(args.out_dim)
# Setup learner's configuration
print('\n\n==== Epoch:{0} ===='.format(epoch))
learner.train()
learner.step_schedule(epoch)
# The optimization loop
data_timer.tic()
batch_timer.tic()
if args.print_freq>0: # Enable to print mini-log
print('Itr |Batch time |Data Time |Loss')
for i, (input, target) in enumerate(train_loader):
data_time.update(data_timer.toc()) # measure data loading time
# Prepare the inputs
if args.use_gpu:
input = input.cuda()
target = target.cuda()
train_target, eval_target = prepare_task_target(input, target, args)
# Optimization
loss, output = learner.learn(input, train_target)
# Update the performance meter
confusion.add(output, eval_target)
# Measure elapsed time
batch_time.update(batch_timer.toc())
data_timer.toc()
# Mini-Logs
losses.update(loss, input.size(0))
if args.print_freq>0 and ((i%args.print_freq==0) or (i==len(train_loader)-1)):
print('[{0:6d}/{1:6d}]\t'
'{batch_time.val:.4f} ({batch_time.avg:.4f})\t'
'{data_time.val:.4f} ({data_time.avg:.4f})\t'
'{loss.val:.3f} ({loss.avg:.3f})'.format(
i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
# Loss-specific information
if args.loss=='CE':
print('[Train] ACC: ', confusion.acc())
elif args.loss in ['KCL','MCL']:
args.cluster2Class = confusion.optimal_assignment(train_loader.num_classes) # Save the mapping in args to use in eval
if args.out_dim <= 20: # Avoid to print a large confusion matrix
confusion.show()
print('Clustering scores:', confusion.clusterscores())
print('[Train] ACC: ', confusion.acc())
elif args.loss=='DPS':
confusion.show(width=15,row_labels=['GT_dis-simi','GT_simi'],column_labels=['Pred_dis-simi','Pred_simi'])
print('[Train] similar pair f1-score:', confusion.f1score(1)) # f1-score for similar pair (label:1)
print('[Train] dissimilar pair f1-score:', confusion.f1score(0))
def evaluate(eval_loader, model, args):
# Initialize all meters
confusion = Confusion(args.out_dim)
print('---- Evaluation ----')
model.eval()
for i, (input, target) in enumerate(eval_loader):
# Prepare the inputs
if args.use_gpu:
with torch.no_grad():
input = input.cuda()
target = target.cuda()
_, eval_target = prepare_task_target(input, target, args)
# Inference
output = model(input)
# Update the performance meter
output = output.detach()
confusion.add(output,eval_target)
# Loss-specific information
KPI = 0
if args.loss == 'CE':
KPI = confusion.acc()
print('[Test] ACC: ', KPI)
elif args.loss in ['KCL', 'MCL']:
confusion.optimal_assignment(eval_loader.num_classes, args.cluster2Class)
if args.out_dim<=20:
confusion.show()
print('Clustering scores:',confusion.clusterscores())
KPI = confusion.acc()
print('[Test] ACC: ', KPI)
elif args.loss == 'DPS':
confusion.show(width=15, row_labels=['GT_dis-simi', 'GT_simi'], column_labels=['Pred_dis-simi', 'Pred_simi'])
KPI = confusion.f1score(1)
print('[Test] similar pair f1-score:', KPI) # f1-score for similar pair (label:1)
print('[Test] dissimilar pair f1-score:', confusion.f1score(0))
return KPI
def run(args):
if not os.path.exists('outputs'):
os.mkdir('outputs')
# Select the optimization criterion/task
if args.loss=='CE':
# Classification
LearnerClass = Learner_Classification
criterion = nn.CrossEntropyLoss()
elif args.loss in ['KCL', 'MCL']:
# Clustering
LearnerClass = Learner_Clustering
criterion = modules.criterion.__dict__[args.loss]()
elif args.loss=='DPS':
# Dense-Pair Similarity Learning
LearnerClass = Learner_DensePairSimilarity
criterion = nn.CrossEntropyLoss()
args.out_dim = 2 # force it
# Prepare dataloaders
loaderFuncs = __import__('dataloaders.'+args.dataset_type)
loaderFuncs = loaderFuncs.__dict__[args.dataset_type]
train_loader, eval_loader = loaderFuncs.__dict__[args.dataset](args.batch_size, args.workers)
# Prepare the model
if args.out_dim<0: # Use ground-truth number of classes/clusters
args.out_dim = train_loader.num_classes
model = LearnerClass.create_model(args.model_type,args.model_name,args.out_dim)
# Load pre-trained model
if args.pretrained_model != '': # Load model weights only
print('=> Load model weights:', args.pretrained_model)
model_state = torch.load(args.pretrained_model,
map_location=lambda storage, loc: storage) # Load to CPU as the default!
model.load_state_dict(model_state, strict=args.strict)
print('=> Load Done')
# Load the pre-trained Similarity Prediction Network (SPN, or the G function in paper)
if args.use_SPN:
# To load a custom SPN, you can modify here.
SPN = Learner_DensePairSimilarity.create_model(args.SPN_model_type, args.SPN_model_name, 2)
print('=> Load SPN model weights:', args.SPN_pretrained_model)
SPN_state = torch.load(args.SPN_pretrained_model,
map_location=lambda storage, loc: storage) # Load to CPU as the default!
SPN.load_state_dict(SPN_state)
print('=> Load SPN Done')
print('SPN model:', SPN)
#SPN.eval() # Tips: Stay in train mode, so the BN layers of SPN adapt to the new domain
args.SPN = SPN # It will be used in prepare_task_target()
# GPU
if args.use_gpu:
torch.cuda.set_device(args.gpuid[0])
cudnn.benchmark = True # make it train faster
model = model.cuda()
criterion = criterion.cuda()
if args.SPN is not None:
args.SPN = args.SPN.cuda()
# Multi-GPU
if len(args.gpuid) > 1:
model = torch.nn.DataParallel(model, device_ids=args.gpuid, output_device=args.gpuid[0])
print('Main model:',model)
print('Criterion:', criterion)
# Evaluation Only
if args.skip_train:
cudnn.benchmark = False # save warm-up time
eval_loader = eval_loader if eval_loader is not None else train_loader
KPI = evaluate(eval_loader, model, args)
return KPI
# Prepare the learner
optim_args = {'lr':args.lr}
if args.optimizer=='SGD':
optim_args['momentum'] = 0.9
optimizer = torch.optim.__dict__[args.optimizer](model.parameters(), **optim_args)
scheduler = MultiStepLR(optimizer, milestones=args.schedule, gamma=0.1)
learner = LearnerClass(model, criterion, optimizer, scheduler)
# Start optimization
if args.resume:
args.start_epoch = learner.resume(args.resume) + 1 # Start from next epoch
KPI = 0
for epoch in range(args.start_epoch, args.epochs):
train(epoch, train_loader, learner, args)
if eval_loader is not None and ((not args.skip_eval) or (epoch==args.epochs-1)):
KPI = evaluate(eval_loader, model, args)
# Save checkpoint at each LR steps and the end of optimization
if epoch+1 in args.schedule+[args.epochs]:
learner.snapshot("outputs/%s_%s_%s"%(args.dataset, args.model_name, args.saveid), KPI)
return KPI
def get_args(argv):
# This function prepares the variables shared across demo.py
parser = argparse.ArgumentParser()
parser.add_argument('--gpuid', nargs="+", type=int, default=[0],
help="The list of gpuid, ex:--gpuid 3 1. Negative value means cpu-only")
parser.add_argument('--model_type', type=str, default='lenet', help="lenet(default)|vgg|resnet")
parser.add_argument('--model_name', type=str, default='LeNet', help="LeNet(default)|LeNetC|VGGS|VGG8|VGG16|ResNet18|ResNet101 ...")
parser.add_argument('--dataset_type', type=str, default='default')
parser.add_argument('--dataset', type=str, default='MNIST', help="MNIST(default)|CIFAR10|CIFAR100|Omniglot|Omniglot_eval_Old_Church_Slavonic ...")
parser.add_argument('--out_dim', type=int, default=-1,
help="Output dimension of network. Default:-1 (Use ground-truth)")
parser.add_argument('--workers', type=int, default=2, help="#Thread for dataloader")
parser.add_argument('--epochs', type=int, default=30, help="End epoch")
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.001, help="Learning rate")
parser.add_argument('--loss', type=str, default='MCL', choices=['CE', 'KCL', 'MCL', 'DPS'],
help="CE(cross-entropy)|KCL|MCL(default)|DPS(Dense-Pair Similarity)")
parser.add_argument('--schedule', nargs="+", type=int, default=[10, 20],
help="The list of epoch numbers to reduce learning rate by factor of 0.1")
parser.add_argument('--optimizer', type=str, default='Adam', choices=['Adam', 'SGD'])
parser.add_argument('--print_freq', type=float, default=100, help="Print the log at every x iteration")
parser.add_argument('--resume', type=str, default='', help="The path to checkpoint file (*.checkpoint.pth)")
parser.add_argument('--pretrained_model', type=str, default='',
help="The path to model file (*.best_model.pth). Do NOT use checkpoint file here.")
parser.add_argument('--saveid', type=str, default='', help="The appendix to the saved model")
parser.add_argument('--skip_train', dest='skip_train', default=False, action='store_true', help="Evaluation only")
parser.add_argument('--skip_eval', dest='skip_eval', default=False, action='store_true', help="Only do the evaluation after training is done")
parser.add_argument('--no-strict', dest='strict', default=True, action='store_false',
help="The pretrained state dict doesn't need to fit the model")
# For SPN
parser.add_argument('--use_SPN', dest='use_SPN', default=False, action='store_true',
help="Use Similarity Prediction Network")
parser.add_argument('--SPN_model_type', type=str, default='vgg', help="This option is only valid when use_SPN=True")
parser.add_argument('--SPN_model_name', type=str, default='VGGS', help="This option is only valid when use_SPN=True")
parser.add_argument('--SPN_pretrained_model', type=str, default='outputs/Omniglot_VGGS_DPS.model.pth', help="This option is only valid when use_SPN=True")
args = parser.parse_args(argv)
# Initialize some useful flags
args.use_gpu = args.gpuid[0] >= 0
args.start_epoch = 0
args.saveid = args.loss if args.saveid == '' else args.saveid
args.cluster2Class = None
args.SPN = None
return args
if __name__ == '__main__':
run(get_args(sys.argv[1:]))