-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathvsl_main.py
425 lines (354 loc) · 22.6 KB
/
vsl_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from tensorflow.contrib import layers
from sklearn import svm, manifold
from mayavi import mlab
import os
import h5py
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
class VarShapeLearner(object):
def __init__(self, obj_res,
batch_size,
global_latent_dim,
local_latent_dim,
local_latent_num):
# define model parameters
self.obj_res = obj_res
self.batch_size = batch_size
self.global_latent_dim = global_latent_dim
self.local_latent_dim = local_latent_dim
self.local_latent_num = local_latent_num
# define input placeholder
self.input_shape = [self.batch_size] + [self.obj_res]*3 + [1]
self.x = tf.placeholder(tf.float32, self.input_shape)
# create model and define its loss and optimizer
self._model_create()
self._model_loss_optimizer()
# start tensorflow session
self.saver = tf.train.Saver()
self.sess = tf.InteractiveSession()
self.sess.run(tf.global_variables_initializer())
# initialize model weights (using dictionary style)
def _weights_init(self):
# z_0, z_i parameters
self.z_mean, self.z_logstd, self.z_all, self.kl_loss = ([0] * (self.local_latent_num + 1) for _ in range(4))
# z_0 -> z_i parameters
self.enc_zzi_fclayer1, self.enc_zzi_fclayer2 = [[0] * self.local_latent_num for _ in range(2)]
# z_i -> z_{i+1} parameters
self.enc_zizi_fclayer1, self.enc_zizi_fclayer2 = [[0] * (self.local_latent_num - 1) for _ in range(2)]
# all -> z_i parameters
self.enc_allzi_fclayer1, self.enc_allzi_fclayer2 = ([0] * self.local_latent_num for _ in range(2))
# x -> z_0, z_i conv layers
self.enc_conv1, self.enc_conv2, self.enc_conv3 = ([0] * (self.local_latent_num + 1) for _ in range(3))
self.enc_fclayer1, self.enc_fclayer2 = ([0] * (self.local_latent_num + 1) for _ in range(2))
# define all weights and biases of the network
self.weights_all = dict()
self.weights_all['W'] = {
# input_shape x -> all_lat z_0, z_i (0, 1:local_lat_num)
'enc_conv1': [tf.get_variable(name='enc_conv1', shape=[6, 6, 6, 1, 32],
initializer=layers.xavier_initializer())]*(self.local_latent_num+1),
'enc_conv2': [tf.get_variable(name='enc_conv2', shape=[5, 5, 5, 32, 64],
initializer=layers.xavier_initializer())]*(self.local_latent_num+1),
'enc_conv3': [tf.get_variable(name='enc_conv3', shape=[4, 4, 4, 64, 128],
initializer=layers.xavier_initializer())]*(self.local_latent_num+1),
'enc_fc1' : [tf.get_variable(name='enc_fc1', shape=[1024, 256],
initializer=layers.xavier_initializer())]*(self.local_latent_num+1),
'enc_fc2' : [tf.get_variable(name='enc_fc2', shape=[256, 100],
initializer=layers.xavier_initializer())]*(self.local_latent_num+1),
# global_lat z_0 -> local_lat z_i
'zzi_fc1' : [tf.get_variable(name='zzi_fc1', shape=[self.global_latent_dim, 100],
initializer=layers.xavier_initializer())]*self.local_latent_num,
'zzi_fc2' : [tf.get_variable(name='zzi_fc2', shape=[100, 100],
initializer=layers.xavier_initializer())]*self.local_latent_num,
# local_lat z_i -> local_lat z_{i+1}
'zizi_fc1': [tf.get_variable(name='zizi_fc1', shape=[self.local_latent_dim, 100],
initializer=layers.xavier_initializer())]*(self.local_latent_num-1),
'zizi_fc2': [tf.get_variable(name='zizi_fc2', shape=[100, 100],
initializer=layers.xavier_initializer())]*(self.local_latent_num-1),
# input_shape x -> global_lat z
'z_mean' : tf.get_variable(name='z_mean', shape=[100, self.global_latent_dim],
initializer=layers.xavier_initializer()),
'z_logstd': tf.get_variable(name='z_logstd', shape=[100, self.global_latent_dim],
initializer=layers.xavier_initializer()),
# merged [x, z_i, z_0] -> local_lat z_{i+1} (i >= 1)
'allzi_fc1':[tf.get_variable(name='allz1_fc1', shape=[200, 100],
initializer=layers.xavier_initializer())]+
[tf.get_variable(name='allzi_fc1', shape=[300, 100],
initializer=layers.xavier_initializer())]*(self.local_latent_num-1),
'allzi_fc2': [tf.get_variable(name='allzi_fc2', shape=[100, 100],
initializer=layers.xavier_initializer())]*self.local_latent_num,
'zi_mean' : [tf.get_variable(name='zi_mean', shape=[100, self.local_latent_dim],
initializer=layers.xavier_initializer())]*self.local_latent_num,
'zi_logstd': [tf.get_variable(name='zi_logstd', shape=[100, self.local_latent_dim],
initializer=layers.xavier_initializer())]*self.local_latent_num,
# combined lat [z_0, z_i] - > input_shape x
'dec_fc1' : tf.get_variable(name='dec_zfc1',
shape=[self.global_latent_dim+self.local_latent_num*self.local_latent_dim,
100 * (self.local_latent_num + 1)],
initializer=layers.xavier_initializer()),
'dec_fc2' : tf.get_variable(name='dec_fc2', shape=[100 * (self.local_latent_num + 1), 1024],
initializer=layers.xavier_initializer()),
'dec_conv1': tf.get_variable(name='dec_conv1', shape=[4, 4, 4, 64, 128],
initializer=layers.xavier_initializer()),
'dec_conv2': tf.get_variable(name='dec_conv2', shape=[5, 5, 5, 32, 64],
initializer=layers.xavier_initializer()),
'dec_conv3': tf.get_variable(name='dec_conv3', shape=[6, 6, 6, 1, 32],
initializer=layers.xavier_initializer())
}
self.weights_all['b'] = {
# input_shape x -> all_lat z_0, z_i (0, 1:local_lat_num)
'enc_conv1' : [tf.Variable(name='enc_conv1', initial_value=tf.zeros(32))]*(self.local_latent_num+1),
'enc_conv2' : [tf.Variable(name='enc_conv2', initial_value=tf.zeros(64))]*(self.local_latent_num+1),
'enc_conv3' : [tf.Variable(name='enc_conv3', initial_value=tf.zeros(128))]*(self.local_latent_num+1),
'enc_fc1' : [tf.Variable(name='enc_fc1', initial_value=tf.zeros(256))]*(self.local_latent_num+1),
'enc_fc2' : [tf.Variable(name='enc_fc2', initial_value=tf.zeros(100))]*(self.local_latent_num+1),
# global_lat z_0 -> local_lat z_i
'zzi_fc1': [tf.Variable(name='zzi_fc1', initial_value=tf.zeros(100))] * self.local_latent_num,
'zzi_fc2': [tf.Variable(name='zzi_fc2', initial_value=tf.zeros(100))] * self.local_latent_num,
# local_lat z_i -> local_lat z_{i+1}
'zizi_fc1': [tf.Variable(name='zizi_fc1', initial_value=tf.zeros(100))] * (self.local_latent_num-1),
'zizi_fc2': [tf.Variable(name='zizi_fc2', initial_value=tf.zeros(100))] * (self.local_latent_num-1),
# local_lat z_i -> local_lat z_{i+1}
'z_mean' : tf.Variable(name='z_mean', initial_value=tf.zeros(self.global_latent_dim)),
'z_logstd': tf.Variable(name='z_logstd', initial_value=tf.zeros(self.global_latent_dim)),
# combined [x, z_i, z_0] -> local_lat z_{i+1} (i >= 1)
'allzi_fc1': [tf.Variable(name='allzi_fc1', initial_value=tf.zeros(100))]*self.local_latent_num,
'allzi_fc2': [tf.Variable(name='allzi_fc2', initial_value=tf.zeros(100))] * self.local_latent_num,
'zi_mean' : [tf.Variable(name='zi_mean', initial_value=tf.zeros(self.local_latent_dim))] * self.local_latent_num,
'zi_logstd': [tf.Variable(name='zi_logstd', initial_value=tf.zeros(self.local_latent_dim))] * self.local_latent_num,
# combined lat [z_0, z_i] - > input_shape x
'dec_fc1': tf.Variable(name='dec_fc1', initial_value=tf.zeros(100*(self.local_latent_num + 1))),
'dec_fc2': tf.Variable(name='dec_fc2', initial_value=tf.zeros(1024)),
'dec_conv1': tf.Variable(name='dec_conv1', initial_value=tf.zeros(64)),
'dec_conv2': tf.Variable(name='dec_conv2', initial_value=tf.zeros(32)),
'dec_conv3': tf.Variable(name='dec_conv3', initial_value=tf.zeros(1)),
}
# use re-parametrization trick
def _sampling(self, z_mean, z_logstd, latent_dim):
epsilon = tf.random_normal((self.batch_size, latent_dim))
return z_mean + tf.exp(z_logstd) * epsilon
# define inference model q(z_0:n|x)
def _inf_model(self, weights, biases):
# input_shape x -> local_lat z_i
for i in range(self.local_latent_num + 1):
self.enc_conv1[i] = tf.nn.relu(tf.nn.conv3d(self.x, weights['enc_conv1'][i],
strides=[1, 2, 2, 2, 1], padding='VALID')
+ biases['enc_conv1'][i])
self.enc_conv2[i] = tf.nn.relu(tf.nn.conv3d(self.enc_conv1[i], weights['enc_conv2'][i],
strides=[1, 2, 2, 2, 1], padding='VALID')
+ biases['enc_conv2'][i])
self.enc_conv3[i] = tf.nn.relu(tf.nn.conv3d(self.enc_conv2[i], weights['enc_conv3'][i],
strides=[1, 1, 1, 1, 1], padding='VALID')
+ biases['enc_conv3'][i])
self.enc_conv3[i] = tf.reshape(self.enc_conv3[i], [self.batch_size, 1024])
self.enc_fclayer1[i] = tf.nn.relu(tf.matmul(self.enc_conv3[i], weights['enc_fc1'][i])
+ biases['enc_fc1'][i])
self.enc_fclayer2[i] = tf.nn.relu(tf.matmul(self.enc_fclayer1[i], weights['enc_fc2'][i])
+ biases['enc_fc2'][i])
# sample global latent variable
self.z_mean[0] = tf.matmul(self.enc_fclayer2[0], weights['z_mean']) + biases['z_mean']
self.z_logstd[0] = tf.matmul(self.enc_fclayer2[0], weights['z_logstd']) + biases['z_logstd']
self.z_all[0] = self._sampling(self.z_mean[0], self.z_logstd[0], self.global_latent_dim)
for i in range(self.local_latent_num):
# z_0 -> z_i
self.enc_zzi_fclayer1[i] = tf.nn.relu(tf.matmul(self.z_all[0], weights['zzi_fc1'][i])
+ biases['zzi_fc1'][i])
self.enc_zzi_fclayer2[i] = tf.nn.relu(tf.matmul(self.enc_zzi_fclayer1[i], weights['zzi_fc2'][i])
+ biases['zzi_fc2'][i])
if i == 0: # sampling z_1
self.enc_allzi_fclayer1[i] = tf.nn.relu(tf.matmul(tf.concat([self.enc_zzi_fclayer2[i], self.enc_fclayer2[i+1]], axis=1),
weights['allzi_fc1'][i]) + biases['allzi_fc1'][i])
self.enc_allzi_fclayer2[i] = tf.nn.relu(tf.matmul(self.enc_zzi_fclayer1[i],
weights['allzi_fc2'][i]) + biases['allzi_fc2'][i])
self.z_mean[1] = tf.matmul(self.enc_allzi_fclayer2[i], weights['zi_mean'][i]) + biases['zi_mean'][i]
self.z_logstd[1] = tf.matmul(self.enc_allzi_fclayer2[i], weights['zi_logstd'][i]) + biases['zi_logstd'][i]
self.z_all[1] = self._sampling(self.z_mean[1], self.z_logstd[1],self.local_latent_dim)
else: # sampling z_i (i >= 1)
self.enc_zizi_fclayer1[i-1] = tf.nn.relu(tf.matmul(self.z_all[i], weights['zizi_fc1'][i-1])
+ biases['zizi_fc1'][i-1])
self.enc_zizi_fclayer2[i-1] = tf.nn.relu(tf.matmul(self.enc_zizi_fclayer1[i-1], weights['zizi_fc2'][i-1])
+ biases['zizi_fc2'][i-1])
self.enc_allzi_fclayer1[i] = tf.nn.relu(tf.matmul(tf.concat([self.enc_zzi_fclayer2[i], self.enc_fclayer2[i+1], self.enc_zizi_fclayer2[i-1]], axis=1),
weights['allzi_fc1'][i]) + biases['allzi_fc1'][i])
self.enc_allzi_fclayer2[i] = tf.nn.relu(tf.matmul(self.enc_allzi_fclayer1[i], weights['allzi_fc2'][i])
+ biases['allzi_fc2'][i])
self.z_mean[i+1] = tf.matmul(self.enc_allzi_fclayer2[i], weights['zi_mean'][i]) + biases['zi_mean'][i]
self.z_logstd[i+1] = tf.matmul(self.enc_allzi_fclayer2[i], weights['zi_logstd'][i]) + biases['zi_logstd'][i]
self.z_all[i+1] = self._sampling(self.z_mean[i+1], self.z_logstd[i+1], self.local_latent_dim)
# concatenate all latent codes
self.latent_feature = tf.concat([self.z_mean[i] for i in range(self.local_latent_num + 1)], axis=1)
# define generative model p(x|z_0:n)
def _gen_model(self, weights, biases):
dec_fclayer1 = tf.nn.relu(tf.matmul(self.latent_feature , weights['dec_fc1']) + biases['dec_fc1'])
dec_fclayer2 = tf.nn.relu(tf.matmul(dec_fclayer1 , weights['dec_fc2']) + biases['dec_fc2'])
dec_fclayer2 = tf.reshape(dec_fclayer2, [self.batch_size, 2, 2, 2, 128])
dec_conv1 = tf.nn.relu(tf.nn.conv3d_transpose(dec_fclayer2, weights['dec_conv1'],
output_shape=[self.batch_size, 5, 5, 5, 64],
strides=[1, 1, 1, 1, 1],padding='VALID') + biases['dec_conv1'])
dec_conv2 = tf.nn.relu(tf.nn.conv3d_transpose(dec_conv1, weights['dec_conv2'],
output_shape=[self.batch_size, 13, 13, 13, 32],
strides=[1, 2, 2, 2, 1], padding='VALID') + biases['dec_conv2'])
dec_conv3 = tf.nn.sigmoid(tf.nn.conv3d_transpose(dec_conv2, weights['dec_conv3'],
output_shape=[self.batch_size, 30, 30, 30, 1],
strides=[1, 2, 2, 2, 1], padding='VALID') + biases['dec_conv3'])
return dec_conv3
# create model
def _model_create(self):
# load defined network structure
self._weights_init()
network_weights = self.weights_all
# learn latent parameters from inference network
self._inf_model(network_weights['W'], network_weights['b'])
# reconstruct training data from learned latent features
self.x_rec = self._gen_model(network_weights['W'], network_weights['b'])
# define VSL loss and optimizer
def _model_loss_optimizer(self):
# define reconstruction loss (binary cross-entropy)
self.rec_loss = -tf.reduce_mean(self.x * tf.log(1e-5 + self.x_rec)
+(1-self.x) * tf.log(1e-5 + 1 - self.x_rec), axis=(1, 2))
# define kl loss
for i in range(self.local_latent_num + 1):
self.kl_loss[i] = -0.5 * tf.reduce_sum(1 + 2 * self.z_logstd[i] - tf.square(self.z_mean[i]) - tf.square(tf.exp(self.z_logstd[i])), axis=1)
self.kl_loss_all = tf.add_n(self.kl_loss) / (self.local_latent_num + 1)
# total loss = kl loss + rec loss
self.loss = tf.reduce_mean(self.rec_loss + 0.001*self.kl_loss_all)
# gradient clipping to avoid nan
optimizer = tf.train.AdamOptimizer(learning_rate=5e-5)
gradients = optimizer.compute_gradients(self.loss)
def ClipIfNotNone(grad):
if grad is None:
return grad
return tf.clip_by_value(grad, -1, 1)
clipped_gradients = [(ClipIfNotNone(grad), var) for grad, var in gradients]
self.optimizer = optimizer.apply_gradients(clipped_gradients)
# train model on mini-batch
def model_fit(self, x):
opt, cost = self.sess.run([self.optimizer, self.loss], feed_dict={self.x: x})
return cost
# define network structure, parameters
global_latent_dim = 20
local_latent_dim = 10
local_latent_num = 5
obj_res = 30
batch_size = 200
print_step = 1
total_epoch = 500
# 3D visualization
def draw_sample(voxel, savepath):
voxel = np.reshape(voxel, (obj_res, obj_res, obj_res))
xx, yy, zz = np.where(voxel >= 0)
ss = voxel[np.where(voxel >= 0)] * 1.
mlab.figure(figure=None, bgcolor=(1,1,1), fgcolor=None, engine=None, size=(400, 400))
s = mlab.points3d(xx, yy, zz, ss,
mode="cube",
colormap='bone',
scale_factor=2)
mlab.view(120, 290, 85)
s.scene.light_manager.lights[0].activate = True
s.scene.light_manager.lights[0].intensity = 1.0
s.scene.light_manager.lights[0].elevation = 30
s.scene.light_manager.lights[0].azimuth = -30
s.scene.light_manager.lights[1].activate = True
s.scene.light_manager.lights[1].intensity = 0.3
s.scene.light_manager.lights[1].elevation = -60
s.scene.light_manager.lights[1].azimuth = -30
s.scene.light_manager.lights[2].activate = False
if savepath == 0:
return mlab.show()
return mlab.savefig(savepath)
# load dataset (pick modelnet40 or modelnet10)
data = h5py.File('dataset/ModelNet40_res30_raw.mat')
train_all = np.transpose(data['train'])
test_all = np.transpose(data['test'])
# load VSL model
VSL = VarShapeLearner(obj_res=obj_res,
batch_size=batch_size,
global_latent_dim=global_latent_dim,
local_latent_dim=local_latent_dim,
local_latent_num=local_latent_num)
# load saved parameters here, comment this to train model from scratch.
VSL.saver.restore(VSL.sess, os.path.abspath('parameters/modelnet40-2619-cost-1.1170.ckpt'))
# training VSL model
for epoch in range(total_epoch):
cost = np.zeros(3, dtype=np.float32)
avg_cost = np.zeros(3, dtype=np.float32)
train_batch = int(train_all.shape[0] / batch_size)
index = epoch + 2620 # correct the training index, set 0 for training from scratch
# iterate for all batches
np.random.shuffle(train_all)
for i in range(train_batch):
x_train = train_all[batch_size*i:batch_size*(i+1),1:].reshape([batch_size, obj_res, obj_res, obj_res, 1])
# calculate and average kl and vae loss for each batch
cost[0] = np.mean(VSL.sess.run(VSL.kl_loss_all, feed_dict={VSL.x: x_train}))
cost[1] = np.mean(VSL.sess.run(VSL.rec_loss, feed_dict={VSL.x: x_train}))
cost[2] = VSL.model_fit(x_train)
avg_cost += cost / train_batch
print("Epoch: {:04d} | kl-loss: {:.4f} + rec-loss: {:.4f} = total-loss: {:.4f}"
.format(index, avg_cost[0], avg_cost[1], avg_cost[2]))
if epoch % print_step == 0:
draw_sample(VSL.sess.run(VSL.x_rec[0,:], feed_dict={VSL.x: x_train}), 'plots/rec-%d.png' % index)
mlab.close()
VSL.saver.save(VSL.sess, os.path.abspath('parameters/modelnet40-{:04d}-cost-{:.4f}.ckpt'.format(index, avg_cost[2])))
# shape classification using SVM
'''note: this process will concatenate all features in the dataset
which will be needed for tsne output.'''
train_batch = int(train_all.shape[0] / batch_size)
np.random.shuffle(train_all)
for i in range(train_batch):
x_train = train_all[batch_size * i:batch_size * (i + 1), 1:].reshape([batch_size, obj_res, obj_res, obj_res, 1])
if i == 0:
train_feature = VSL.sess.run(VSL.latent_feature, feed_dict={VSL. x:x_train})
else:
train_feature = np.concatenate([train_feature, VSL.sess.run(VSL.latent_feature, feed_dict={VSL. x:x_train})])
np.random.shuffle(test_all)
test_batch = int(test_all.shape[0] / batch_size)
for i in range(test_batch):
x_test = test_all[batch_size * i:batch_size * (i + 1), 1:].reshape(
[batch_size, obj_res, obj_res, obj_res, 1])
if i == 0:
test_feature = VSL.sess.run(VSL.latent_feature, feed_dict={VSL.x: x_test})
else:
test_feature = np.concatenate(
[test_feature, VSL.sess.run(VSL.latent_feature, feed_dict={VSL.x: x_test})])
clf = svm.SVC(kernel='rbf')
clf.fit(train_feature[:,:], train_all[0:batch_size * train_batch, 0])
train_accuracy = np.sum(train_all[0:batch_size * train_batch, 0] == clf.predict(train_feature[:,:])) / (train_batch * batch_size)
test_accuracy = np.sum(test_all[0:batch_size * test_batch, 0] == clf.predict(test_feature[:,:])) / (test_batch * batch_size)
print('Shape classification: train: {:.4f}, test: {:.4f}'
.format(train_accuracy, test_accuracy))
# t-sne 2D visualization
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
Y = tsne.fit_transform(train_feature)
ax = plt.figure(figsize=(8, 8), facecolor='white')
plt.scatter(Y[:, 0], Y[:, 1], c=train_all[0:batch_size * train_batch, 0], edgecolors='none', cmap='terrain')
plt.xticks([])
plt.yticks([])
plt.axis('tight')
plt.show()
plt.savefig('plots/tsne.png')
# shape generation with Gaussian noise
'''please fetch model id number from ModelNet: http://modelnet.cs.princeton.edu/
ModelNet40 and ModelNet10 has 40 and 10 classes respectively with alphabetical naming order.
Here is the example: id = 1 means with all models in "airplane" class. '''
id = 1
test_all = np.transpose(data['test'])
test_indx = np.where(test_all[:,0] == id)
test = test_all[test_indx[-0],1:]
x_test = test_all[test_indx[0][0]:test_indx[0][0]+batch_size,1:].reshape([batch_size, obj_res, obj_res, obj_res, 1])
z = VSL.sess.run(VSL.latent_feature, feed_dict={VSL.x: x_test})
z_new = z + np.random.normal(scale=0.02, size=[batch_size, local_latent_dim*local_latent_num+global_latent_dim])
for i in range(20):
draw_sample(VSL.sess.run(VSL.x_rec[i, :], feed_dict={VSL.latent_feature: z_new}), 'plots/rec_{:d}.png'.format(i))
mlab.close()
# shape interpolation
'''shape interpolation visualization from two reconstructed shapes.
id1 and id2 means two shape instances in the reconstructed shape batches.
note: id number cannot exceed the batch_size.'''
z = VSL.sess.run(VSL.latent_feature, feed_dict={VSL.x: x_test})
id1 = 8
id2 = 0
d = z[id1, :] - z[id2, :]
for i in range(7):
draw_sample(VSL.sess.run(VSL.x_rec[id2, :], feed_dict={VSL.latent_feature: z}), 'plots/interpolation_airplane-{:d}.png'.format(i))
mlab.close()
z[id2, :] = z[id2, :] + d / 6