forked from mli0603/stereo-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
263 lines (217 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Authors: Zhaoshuo Li, Xingtong Liu, Francis X. Creighton, Russell H. Taylor, and Mathias Unberath
#
# Copyright (c) 2020. Johns Hopkins University - All rights reserved.
import argparse
import os
import random
import numpy as np
import torch
from dataset import build_data_loader
from module.sttr import STTR
from utilities.checkpoint_saver import Saver
from utilities.eval import evaluate
from utilities.inference import inference
from utilities.summary_logger import TensorboardSummary
from utilities.train import train_one_epoch
from utilities.foward_pass import set_downsample
from module.loss import build_criterion
def get_args_parser():
"""
Parse arguments
"""
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-4, type=float)
parser.add_argument('--lr_regression', default=2e-4, type=float)
parser.add_argument('--lr_decay_rate', default=0.99, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--ft', action='store_true', help='load model from checkpoint, but discard optimizer state')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--inference', action='store_true')
parser.add_argument('--num_workers', default=1, type=int)
parser.add_argument('--checkpoint', type=str, default='dev', help='checkpoint name for current experiment')
parser.add_argument('--pre_train', action='store_true')
parser.add_argument('--downsample', default=3, type=int, help='Ratio to downsample width/height')
parser.add_argument('--apex', action='store_true', help='enable mixed precision training')
# * STTR
parser.add_argument('--channel_dim', default=128, type=int,
help="Size of the embeddings (dimension of the transformer)")
# * Positional Encoding
parser.add_argument('--position_encoding', default='sine1d_rel', type=str, choices=('sine1d_rel', 'none'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--num_attn_layers', default=6, type=int, help="Number of attention layers in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
# * Regression Head
parser.add_argument('--regression_head', default='ot', type=str, choices=('softmax', 'ot'),
help='Normalization to be used')
parser.add_argument('--context_adjustment_layer', default='cal', choices=['cal', 'none'], type=str)
parser.add_argument('--cal_num_blocks', default=8, type=int)
parser.add_argument('--cal_feat_dim', default=16, type=int)
parser.add_argument('--cal_expansion_ratio', default=4, type=int)
# * Dataset parameters
parser.add_argument('--dataset', default='sceneflow', type=str, help='dataset to train/eval on')
parser.add_argument('--dataset_directory', default='', type=str, help='directory to dataset')
parser.add_argument('--validation', default='validation', type=str, choices={'validation', 'validation_all'},
help='If we validate on all provided training images')
# * Loss
parser.add_argument('--px_error_threshold', type=int, default=3,
help='Number of pixels for error computation (default 3 px)')
parser.add_argument('--loss_weight', type=str, default='rr:1.0, l1_raw:1.0, l1:1.0, occ_be:1.0',
help='Weight for losses')
parser.add_argument('--validation_max_disp', type=int, default=-1)
return parser
def save_checkpoint(epoch, model, optimizer, lr_scheduler, prev_best, checkpoint_saver, best, amp=None):
"""
Save current state of training
"""
# save model
checkpoint = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'best_pred': prev_best
}
if amp is not None:
checkpoint['amp'] = amp.state_dict()
if best:
checkpoint_saver.save_checkpoint(checkpoint, 'model.pth.tar', write_best=False)
else:
checkpoint_saver.save_checkpoint(checkpoint, 'epoch_' + str(epoch) + '_model.pth.tar', write_best=False)
def print_param(model):
"""
print number of parameters in the model
"""
n_parameters = sum(p.numel() for n, p in model.named_parameters() if 'backbone' in n and p.requires_grad)
print('number of params in backbone:', f'{n_parameters:,}')
n_parameters = sum(p.numel() for n, p in model.named_parameters() if
'transformer' in n and 'regression' not in n and p.requires_grad)
print('number of params in transformer:', f'{n_parameters:,}')
n_parameters = sum(p.numel() for n, p in model.named_parameters() if 'tokenizer' in n and p.requires_grad)
print('number of params in tokenizer:', f'{n_parameters:,}')
n_parameters = sum(p.numel() for n, p in model.named_parameters() if 'regression' in n and p.requires_grad)
print('number of params in regression:', f'{n_parameters:,}')
def main(args):
# get device
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# build model
model = STTR(args).to(device)
print_param(model)
# set learning rate
param_dicts = [
{"params": [p for n, p in model.named_parameters() if
"backbone" not in n and "regression" not in n and p.requires_grad]},
{
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
{
"params": [p for n, p in model.named_parameters() if "regression" in n and p.requires_grad],
"lr": args.lr_regression,
},
]
# define optimizer and learning rate scheduler
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=args.lr_decay_rate)
# mixed precision training
if args.apex:
from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
else:
amp = None
# load checkpoint if provided
prev_best = np.inf
if args.resume != '':
if not os.path.isfile(args.resume):
raise RuntimeError(f"=> no checkpoint found at '{args.resume}'")
checkpoint = torch.load(args.resume)
pretrained_dict = checkpoint['state_dict']
missing, unexpected = model.load_state_dict(pretrained_dict, strict=False)
# check missing and unexpected keys
if len(missing) > 0:
print("Missing keys: ", ','.join(missing))
raise Exception("Missing keys.")
unexpected_filtered = [k for k in unexpected if
'running_mean' not in k and 'running_var' not in k] # skip bn params
if len(unexpected_filtered) > 0:
print("Unexpected keys: ", ','.join(unexpected_filtered))
raise Exception("Unexpected keys.")
print("Pre-trained model successfully loaded.")
# if not ft/inference/eval, load states for optimizer, lr_scheduler, amp and prev best
if not (args.ft or args.inference or args.eval):
if len(unexpected) > 0: # loaded checkpoint has bn parameters, legacy resume, skip loading
raise Exception("Resuming legacy model with BN parameters. Not possible due to BN param change. " +
"Do you want to finetune or inference? If so, check your arguments.")
else:
args.start_epoch = checkpoint['epoch'] + 1
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
prev_best = checkpoint['best_pred']
if args.apex:
amp.load_state_dict(checkpoint['amp'])
print("Pre-trained optimizer, lr scheduler and stats successfully loaded.")
# inference
if args.inference:
print("Start inference")
_, _, data_loader = build_data_loader(args)
inference(model, data_loader, device, args.downsample)
return
# initiate saver and logger
checkpoint_saver = Saver(args)
summary_writer = TensorboardSummary(checkpoint_saver.experiment_dir)
# build dataloader
data_loader_train, data_loader_val, _ = build_data_loader(args)
# build loss criterion
criterion = build_criterion(args)
# set downsample rate
set_downsample(args)
# eval
if args.eval:
print("Start evaluation")
evaluate(model, criterion, data_loader_val, device, 0, summary_writer, True)
return
# train
print("Start training")
for epoch in range(args.start_epoch, args.epochs):
# train
print("Epoch: %d" % epoch)
train_one_epoch(model, data_loader_train, optimizer, criterion, device, epoch, summary_writer,
args.clip_max_norm, amp)
# step lr if not pretraining
if not args.pre_train:
lr_scheduler.step()
print("current learning rate", lr_scheduler.get_lr())
# empty cache
torch.cuda.empty_cache()
# save if pretrain, save every 50 epochs
if args.pre_train or epoch % 50 == 0:
save_checkpoint(epoch, model, optimizer, lr_scheduler, prev_best, checkpoint_saver, False, amp)
# validate
eval_stats = evaluate(model, criterion, data_loader_val, device, epoch, summary_writer, False)
# save if best
if prev_best > eval_stats['epe'] and 0.5 > eval_stats['px_error_rate']:
save_checkpoint(epoch, model, optimizer, lr_scheduler, prev_best, checkpoint_saver, True, amp)
# save final model
save_checkpoint(epoch, model, optimizer, lr_scheduler, prev_best, checkpoint_saver, False, amp)
return
if __name__ == '__main__':
ap = argparse.ArgumentParser('STTR training and evaluation script', parents=[get_args_parser()])
args_ = ap.parse_args()
main(args_)