-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcherrypick.py
37 lines (37 loc) · 1.6 KB
/
cherrypick.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#!/usr/bin/env python
import pandas as pd
import numpy as np
from pathlib import Path
flops = {}
for val_test in ["val", "test"]:
for acc_loss in ["acc", "loss"]:
for small_normal in ["small", "normal"]:
for ds in ["fish", "birds", "plants", "cifar", "aircrafts"]:
df = []
run = 1
while(True):
path = f"runs/{val_test}/{acc_loss}/{run}/{small_normal}_{ds}.csv"
try:
new_df = pd.read_csv(path, index_col=0)
old_columns = new_df.columns
new_df = new_df.loc[:, new_df.var() > 0.00001]
new_columns = new_df.columns
df.append(new_df)
for column in old_columns:
if column not in new_columns:
full_column = f"{column},{val_test},{acc_loss},{small_normal}"
if full_column in flops:
flops[full_column] += 1
else:
flops[full_column] = 1
except:
break
run += 1
if df:
df = pd.concat(df).groupby(level=0).mean()
path = f"runs/{val_test}/{acc_loss}/avgnzv/{small_normal}_{ds}.csv"
filepath = Path(path)
filepath.parent.mkdir(parents=True, exist_ok=True)
df.to_csv(path)
for flop in flops:
print(f"{flop},{flops[flop]}")