-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgps_to_xyz.py
346 lines (258 loc) · 11 KB
/
gps_to_xyz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""Provides helper methods for loading and parsing KITTI data."""
from collections import namedtuple
import numpy as np
from PIL import Image
import math
import glob
import os
from matplotlib import pyplot as plt
import numpy as np
# Per dataformat.txt
OxtsPacket = namedtuple('OxtsPacket',
'lat, lon, alt, ' +
'roll, pitch, yaw, ' +
'vn, ve, vf, vl, vu, ' +
'ax, ay, az, af, al, au, ' +
'wx, wy, wz, wf, wl, wu, ' +
'pos_accuracy, vel_accuracy, ' +
'navstat, numsats, ' +
'posmode, velmode, orimode')
# Bundle into an easy-to-access structure
OxtsData = namedtuple('OxtsData', 'packet, T_w_imu')
def subselect_files(files, indices):
try:
files = [files[i] for i in indices]
except:
pass
return files
def rotx(t):
"""Rotation about the x-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[1, 0, 0],
[0, c, -s],
[0, s, c]])
def roty(t):
"""Rotation about the y-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
def rotz(t):
"""Rotation about the z-axis."""
c = np.cos(t)
s = np.sin(t)
return np.array([[c, -s, 0],
[s, c, 0],
[0, 0, 1]])
def transform_from_rot_trans(R, t):
"""Transforation matrix from rotation matrix and translation vector."""
R = R.reshape(3, 3)
t = t.reshape(3, 1)
return np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))
def read_calib_file(filepath):
"""Read in a calibration file and parse into a dictionary."""
data = {}
with open(filepath, 'r') as f:
for line in f.readlines():
try:
key, value = line.split(':', 1)
except ValueError:
key, value = line.split(' ', 1)
# The only non-float values in these files are dates, which
# we don't care about anyway
try:
data[key] = np.array([float(x) for x in value.split()])
except ValueError:
pass
return data
def pose_from_oxts_packet(packet, scale):
"""Helper method to compute a SE(3) pose matrix from an OXTS packet.
"""
er = 6378137. # earth radius (approx.) in meters
# Use a Mercator projection to get the translation vector
tx = scale * packet.lon * np.pi * er / 180.
ty = scale * er * \
np.log(np.tan((90. + packet.lat) * np.pi / 360.))
tz = packet.alt
t = np.array([tx, ty, tz])
# Use the Euler angles to get the rotation matrix
Rx = rotx(packet.roll)
Ry = roty(packet.pitch)
Rz = rotz(packet.yaw)
R = Rz.dot(Ry.dot(Rx))
# Combine the translation and rotation into a homogeneous transform
return R, t
def load_oxts_packets_and_poses(oxts_files):
"""Generator to read OXTS ground truth data.
Poses are given in an East-North-Up coordinate system
whose origin is the first GPS position.
"""
# Scale for Mercator projection (from first lat value)
scale = None
# Origin of the global coordinate system (first GPS position)
origin = None
oxts = {}
for filename in oxts_files:
with open(filename, 'r') as f:
for line in f.readlines():
line = line.split()
# Last five entries are flags and counts
line[:-5] = [float(x) for x in line[:-5]]
line[-5:] = [int(float(x)) for x in line[-5:]]
packet = OxtsPacket(*line)
if scale is None:
scale = np.cos(packet.lat * np.pi / 180.)
R, t = pose_from_oxts_packet(packet, scale)
if origin is None:
origin = t
T_w_imu = transform_from_rot_trans(R, t - origin)
name = os.path.basename(filename).split('.')[0]
assert name not in oxts
oxts[name] = OxtsData(packet, T_w_imu)
#oxts.append(OxtsData(packet, T_w_imu))
return oxts
def load_image(file, mode):
"""Load an image from file."""
return Image.open(file).convert(mode)
def yield_images(imfiles, mode):
"""Generator to read image files."""
for file in imfiles:
yield load_image(file, mode)
def load_velo_scan(file):
"""Load and parse a velodyne binary file."""
scan = np.fromfile(file, dtype=np.float32)
return scan.reshape((-1, 4))
def yield_velo_scans(velo_files):
"""Generator to parse velodyne binary files into arrays."""
for file in velo_files:
yield load_velo_scan(file)
def load_calib_rigid(filepath):
"""Read a rigid transform calibration file as a numpy.array."""
data = read_calib_file(filepath)
return transform_from_rot_trans(data['R'], data['T'])
def load_calib_cam_to_cam(velo_to_cam_filepath, cam_to_cam_filepath):
# We'll return the camera calibration as a dictionary
data = {}
# Load the rigid transformation from velodyne coordinates
# to unrectified cam0 coordinates
T_cam0unrect_velo = load_calib_rigid(velo_to_cam_filepath)
data['T_cam0_velo_unrect'] = T_cam0unrect_velo
# Load and parse the cam-to-cam calibration data
filedata = read_calib_file(cam_to_cam_filepath)
# Create 3x4 projection matrices
P_rect_00 = np.reshape(filedata['P_rect_00'], (3, 4))
P_rect_10 = np.reshape(filedata['P_rect_01'], (3, 4))
P_rect_20 = np.reshape(filedata['P_rect_02'], (3, 4))
P_rect_30 = np.reshape(filedata['P_rect_03'], (3, 4))
data['P_rect_00'] = P_rect_00
data['P_rect_10'] = P_rect_10
data['P_rect_20'] = P_rect_20
data['P_rect_30'] = P_rect_30
# Create 4x4 matrices from the rectifying rotation matrices
R_rect_00 = np.eye(4)
R_rect_00[0:3, 0:3] = np.reshape(filedata['R_rect_00'], (3, 3))
R_rect_10 = np.eye(4)
R_rect_10[0:3, 0:3] = np.reshape(filedata['R_rect_01'], (3, 3))
R_rect_20 = np.eye(4)
R_rect_20[0:3, 0:3] = np.reshape(filedata['R_rect_02'], (3, 3))
R_rect_30 = np.eye(4)
R_rect_30[0:3, 0:3] = np.reshape(filedata['R_rect_03'], (3, 3))
data['R_rect_00'] = R_rect_00
data['R_rect_10'] = R_rect_10
data['R_rect_20'] = R_rect_20
data['R_rect_30'] = R_rect_30
# Compute the rectified extrinsics from cam0 to camN
T0 = np.eye(4)
T0[0, 3] = P_rect_00[0, 3] / P_rect_00[0, 0]
T1 = np.eye(4)
T1[0, 3] = P_rect_10[0, 3] / P_rect_10[0, 0]
T2 = np.eye(4)
T2[0, 3] = P_rect_20[0, 3] / P_rect_20[0, 0]
T3 = np.eye(4)
T3[0, 3] = P_rect_30[0, 3] / P_rect_30[0, 0]
# Compute the velodyne to rectified camera coordinate transforms
data['T_cam0_velo'] = T0.dot(R_rect_00.dot(T_cam0unrect_velo))
data['T_cam1_velo'] = T1.dot(R_rect_00.dot(T_cam0unrect_velo))
data['T_cam2_velo'] = T2.dot(R_rect_00.dot(T_cam0unrect_velo))
data['T_cam3_velo'] = T3.dot(R_rect_00.dot(T_cam0unrect_velo))
# Compute the camera intrinsics
data['K_cam0'] = P_rect_00 #[0:3, 0:3]
data['K_cam1'] = P_rect_10 #[0:3, 0:3]
data['K_cam2'] = P_rect_20 #[0:3, 0:3]
data['K_cam3'] = P_rect_30 #[0:3, 0:3]
# Compute the stereo baselines in meters by projecting the origin of
# each camera frame into the velodyne frame and computing the distances
# between them
p_cam = np.array([0, 0, 0, 1])
p_velo0 = np.linalg.inv(data['T_cam0_velo']).dot(p_cam)
p_velo1 = np.linalg.inv(data['T_cam1_velo']).dot(p_cam)
p_velo2 = np.linalg.inv(data['T_cam2_velo']).dot(p_cam)
p_velo3 = np.linalg.inv(data['T_cam3_velo']).dot(p_cam)
data['b_gray'] = np.linalg.norm(p_velo1 - p_velo0) # gray baseline
data['b_rgb'] = np.linalg.norm(p_velo3 - p_velo2) # rgb baseline
return data
def pose_inverse(pose):
R = pose[:3, :3]
t = pose[:3, 3:4]
R_new = R.transpose()
t_new = -np.matmul(R_new, t)
return np.vstack((np.hstack([R_new, t_new]), [0, 0, 0, 1]))
def load_calib(calib_imu_to_velo_filepath, velo_to_cam_filepath, cam_to_cam_filepath):
"""Load and compute intrinsic and extrinsic calibration parameters."""
# We'll build the calibration parameters as a dictionary, then
# convert it to a namedtuple to prevent it from being modified later
data = {}
# Load the rigid transformation from IMU to velodyne
#calib_imu_to_velo_filepath = 'calib_imu_to_velo.txt'
#velo_to_cam_filepath = 'calib_velo_to_cam.txt'
#cam_to_cam_filepath = 'calib_cam_to_cam.txt'
data['T_velo_imu'] = load_calib_rigid(calib_imu_to_velo_filepath)
# Load the camera intrinsics and extrinsics
data.update(load_calib_cam_to_cam(velo_to_cam_filepath, cam_to_cam_filepath))
# Pre-compute the IMU to rectified camera coordinate transforms
data['T_cam0_imu'] = data['T_cam0_velo'].dot(data['T_velo_imu'])
data['T_cam1_imu'] = data['T_cam1_velo'].dot(data['T_velo_imu'])
data['T_cam2_imu'] = data['T_cam2_velo'].dot(data['T_velo_imu'])
data['T_cam3_imu'] = data['T_cam3_velo'].dot(data['T_velo_imu'])
# np.vstack((np.hstack([R, t]), [0, 0, 0, 1]))
data['T_imu_cam0'] = pose_inverse(data['T_cam0_imu'])
data['T_imu_cam1'] = pose_inverse(data['T_cam1_imu'])
data['T_imu_cam2'] = pose_inverse(data['T_cam2_imu'])
data['T_imu_cam3'] = pose_inverse(data['T_cam3_imu'])
return data
if __name__ == '__main__':
ddir = '/home/spurs/dataset/kitti_raw/2011_10_03/2011_10_03_drive_0047_sync/oxts/data'
files = glob.glob(os.path.join(ddir, '*.txt'))
files.sort()
oxts = load_oxts_packets_and_poses(files)
names = list(oxts.keys())
names.sort()
x = [oxts[it].T_w_imu[0][3] for it in names]
y = [oxts[it].T_w_imu[1][3] for it in names]
z = [oxts[it].T_w_imu[2][3] for it in names]
print(f"x: {x[:10]}, min(x)={min(x)}, max(x)={max(x)}")
print(f"y: {y[:10]}, min(y)={min(y)}, max(y)={max(y)}")
print(f"z: {z[:10]}, min(z)={min(z)}, max(z)={max(z)}")
print(names[0], oxts[names[0]].T_w_imu)
ax = plt.axes(projection='3d')
ax.plot3D(x, y, z)
ax.set_aspect('equal')
plt.show()
calib_imu_to_velo_filepath = '/home/spurs/dataset/kitti_raw/2011_10_03/calib_imu_to_velo.txt'
velo_to_cam_filepath = '/home/spurs/dataset/kitti_raw/2011_10_03/calib_velo_to_cam.txt'
cam_to_cam_filepath = '/home/spurs/dataset/kitti_raw/2011_10_03/calib_cam_to_cam.txt'
calib = load_calib(calib_imu_to_velo_filepath, velo_to_cam_filepath, cam_to_cam_filepath)
poses = [np.matmul(oxts[it].T_w_imu, calib['T_imu_cam2']) for it in names]
x = [it[0][3] for it in poses]
y = [it[1][3] for it in poses]
z = [it[2][3] for it in poses]
print(f"T_imu_cam2={calib['T_imu_cam2']}")
print(f"x: {x[:10]}, min(x)={min(x)}, max(x)={max(x)}")
print(f"y: {y[:10]}, min(y)={min(y)}, max(y)={max(y)}")
print(f"z: {z[:10]}, min(z)={min(z)}, max(z)={max(z)}")
ax = plt.axes(projection='3d')
ax.plot3D(x, y, z)
ax.set_aspect('equal')
plt.show()