-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathbmp390.h
324 lines (262 loc) · 9.13 KB
/
bmp390.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#ifndef BMP390_H
#define BMP390_H
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "pico/stdio.h"
#include "pico/stdlib.h"
#include "hardware/i2c.h"
#define BMP_RESET_REG 0x7E
#define BMP_RESET_VAL 0xB6
#define BMP_SENSOR_ID_REG 0x00
#define BMP_SENSOR_ID_VAL 0x60
#define BMP_OSR_REG 0x1C
#define BMP_CAL_REG 0x31
#define BMP_CAL_LEN 0x15
#define BMP_TEMPERATURE_REG 0x07
#define BMP_PRESSURE_REG 0x04
#define BMP_MODE_REG 0x1B
#define BMP_MODE_VAL 0x13 // Forced Mode, Temp Enable, Pressure Enable
#define BMP_STATUS_REG 0x03
#define ASSERT_OK(X) { if (X == false) return false; };
typedef struct {
uint16_t T1;
uint16_t T2;
int8_t T3;
int16_t P1;
int16_t P2;
int8_t P3;
int8_t P4;
uint16_t P5;
uint16_t P6;
int8_t P7;
int8_t P8;
int16_t P9;
int8_t P10;
int8_t P11;
} bmp_calib_param_t;
typedef struct {
double T1;
double T2;
double T3;
double P1;
double P2;
double P3;
double P4;
double P5;
double P6;
double P7;
double P8;
double P9;
double P10;
double P11;
} bmp_calib_part_param_t;
typedef struct {
int addr;
int rate;
int scl;
int sda;
i2c_inst_t* inst;
} i2c_t;
typedef struct {
i2c_t i2c;
uint8_t oss;
float temperature;
float pressure;
float altitude;
bmp_calib_param_t calib;
bmp_calib_part_param_t calib_part;
} bmp_t;
bool bmp_reset(bmp_t* bmp) {
uint8_t data_buffer[] = {
BMP_RESET_REG,
BMP_RESET_VAL
};
i2c_write_blocking(bmp->i2c.inst, bmp->i2c.addr, data_buffer, 2, false);
#ifdef DEBUG
printf("INFO: Successfully reset sensor.\n");
#endif
sleep_ms(10);
return true;
}
bool bmp_check_chip_id(bmp_t* bmp) {
uint8_t chip_id_reg = BMP_SENSOR_ID_REG;
uint8_t chip_id_val[1];
i2c_write_blocking(bmp->i2c.inst, bmp->i2c.addr, &chip_id_reg, 1, true);
i2c_read_blocking(bmp->i2c.inst, bmp->i2c.addr, chip_id_val, 1, false);
if (chip_id_val[0] != BMP_SENSOR_ID_VAL) {
#ifdef DEBUG
printf("Returned Chip ID: 0x%02x\n", chip_id_val[0]);
printf("Check your I2C configuration and connection.\n");
#endif
return false;
}
#ifdef DEBUG
printf("INFO: Successfully checked the Chip ID.\n");
#endif
return true;
}
bool bmp_set_oversampling_rate(bmp_t* bmp) {
uint8_t data_buffer[] = {
BMP_OSR_REG,
(bmp->oss << 3) | (bmp->oss << 0)
};
i2c_write_blocking(bmp->i2c.inst, bmp->i2c.addr, data_buffer, 2, false);
#ifdef DEBUG
printf("INFO: Successfully configured oversampling rate.\n");
#endif
return true;
}
bool bmp_get_calib_coeffs(bmp_t* bmp) {
uint8_t calib_coeffs_reg = BMP_CAL_REG;
uint8_t calib_coeffs_val[BMP_CAL_LEN];
i2c_write_blocking(bmp->i2c.inst, bmp->i2c.addr, &calib_coeffs_reg, 1, true);
i2c_read_blocking(bmp->i2c.inst, bmp->i2c.addr, calib_coeffs_val, BMP_CAL_LEN, false);
bmp->calib.T1 = (calib_coeffs_val[1] << 8) | calib_coeffs_val[0];
bmp->calib.T2 = (calib_coeffs_val[3] << 8) | calib_coeffs_val[2];
bmp->calib.T3 = calib_coeffs_val[4];
bmp->calib.P1 = (calib_coeffs_val[6] << 8) | calib_coeffs_val[5];
bmp->calib.P2 = (calib_coeffs_val[8] << 8) | calib_coeffs_val[7];
bmp->calib.P3 = calib_coeffs_val[9];
bmp->calib.P4 = calib_coeffs_val[10];
bmp->calib.P5 = (calib_coeffs_val[12] << 8) | calib_coeffs_val[11];
bmp->calib.P6 = (calib_coeffs_val[14] << 8) | calib_coeffs_val[13];
bmp->calib.P7 = calib_coeffs_val[15];
bmp->calib.P8 = calib_coeffs_val[16];
bmp->calib.P9 = (calib_coeffs_val[18] << 8) | calib_coeffs_val[17];
bmp->calib.P10 = calib_coeffs_val[19];
bmp->calib.P11 = calib_coeffs_val[20];
bmp->calib_part.T1 = (double)bmp->calib.T1 / pow(2, -8.0);
bmp->calib_part.T2 = (double)bmp->calib.T2 / pow(2, 30.0);
bmp->calib_part.T3 = (double)bmp->calib.T3 / pow(2, 48.0);
bmp->calib_part.P1 = ((double)bmp->calib.P1 - pow(2, 14.0)) / pow(2, 20.0);
bmp->calib_part.P2 = ((double)bmp->calib.P2 - pow(2, 14.0)) / pow(2, 29.0);
bmp->calib_part.P3 = (double)bmp->calib.P3 / pow(2, 32.0);
bmp->calib_part.P4 = (double)bmp->calib.P4 / pow(2, 37.0);
bmp->calib_part.P5 = (double)bmp->calib.P5 / pow(2, -3.0);
bmp->calib_part.P6 = (double)bmp->calib.P6 / pow(2, 6.0);
bmp->calib_part.P7 = (double)bmp->calib.P7 / pow(2, 8.0);
bmp->calib_part.P8 = (double)bmp->calib.P8 / pow(2, 15.0);
bmp->calib_part.P9 = (double)bmp->calib.P9 / pow(2, 48.0);
bmp->calib_part.P10 = (double)bmp->calib.P10 / pow(2, 48.0);
bmp->calib_part.P11 = (double)bmp->calib.P11 / pow(2.0, 65.0);
#ifdef DEBUG
printf("==== CALIBRATION COEFFS ====\n");
printf("T1: %lf\n", bmp->calib_part.T1);
printf("T2: %lf\n", bmp->calib_part.T2);
printf("T3: %lf\n", bmp->calib_part.T3);
printf("P1: %lf\n", bmp->calib_part.P1);
printf("P2: %lf\n", bmp->calib_part.P2);
printf("P3: %lf\n", bmp->calib_part.P3);
printf("P4: %lf\n", bmp->calib_part.P4);
printf("P5: %lf\n", bmp->calib_part.P5);
printf("P6: %lf\n", bmp->calib_part.P6);
printf("P7: %lf\n", bmp->calib_part.P7);
printf("P8: %lf\n", bmp->calib_part.P8);
printf("P9: %lf\n", bmp->calib_part.P9);
printf("P10: %lf\n", bmp->calib_part.P10);
printf("P11: %lf\n", bmp->calib_part.P11);
printf("============================\n");
#endif
return true;
}
bool bmp_read_uncalibrated_temperature(bmp_t* bmp) {
uint8_t temp_reg = BMP_TEMPERATURE_REG;
uint8_t temp_val[3];
i2c_write_blocking(bmp->i2c.inst, bmp->i2c.addr, &temp_reg, 1, true);
i2c_read_blocking(bmp->i2c.inst, bmp->i2c.addr, temp_val, 3, false);
bmp->temperature = (temp_val[2] << 16) | (temp_val[1] << 8) | temp_val[0];
return true;
}
bool bmp_read_uncalibrated_pressure(bmp_t* bmp) {
uint8_t pres_reg = BMP_PRESSURE_REG;
uint8_t pres_val[3];
i2c_write_blocking(bmp->i2c.inst, bmp->i2c.addr, &pres_reg, 1, true);
i2c_read_blocking(bmp->i2c.inst, bmp->i2c.addr, pres_val, 3, false);
bmp->pressure = (pres_val[2] << 16) | (pres_val[1] << 8) | pres_val[0];
return true;
}
bool bmp_calibrate_temperature(bmp_t* bmp) {
double par1 = bmp->temperature - bmp->calib_part.T1;
double par2 = par1 * bmp->calib_part.T2;
bmp->temperature = par2 + (par1 * par1) * bmp->calib_part.T3;
return true;
}
bool bmp_calibrate_pressure(bmp_t* bmp) {
double out1, out2, out3;
{
double par1 = bmp->calib_part.P6 * bmp->temperature;
double par2 = bmp->calib_part.P7 * pow(bmp->temperature, 2.0);
double par3 = bmp->calib_part.P8 * pow(bmp->temperature, 3.0);
out1 = bmp->calib_part.P5 + par1 + par2 + par3;
}
{
double par1 = bmp->calib_part.P2 * bmp->temperature;
double par2 = bmp->calib_part.P3 * pow(bmp->temperature, 2.0);
double par3 = bmp->calib_part.P4 * pow(bmp->temperature, 3.0);
out2 = bmp->pressure * (bmp->calib_part.P1 + par1 + par2 + par3);
}
{
double par1 = pow(bmp->pressure, 2.0);
double par2 = bmp->calib_part.P9 + bmp->calib_part.P10 * bmp->temperature;
double par3 = par1 * par2;
out3 = par3 + bmp->calib_part.P11 * pow(bmp->pressure, 3);
}
bmp->pressure = (out1 + out2 + out3) / 100.0;
return true;
}
bool bmp_calculate_altitude(bmp_t* bmp) {
bmp->altitude = ((pow((1013.25 / bmp->pressure), (1/5.257)) - 1) * (bmp->temperature + 273.15)) / 0.0065;
return true;
}
bool bmp_get_pressure_temperature(bmp_t* bmp) {
bool res = true;
{
uint8_t data_buffer[] = {
BMP_MODE_REG,
BMP_MODE_VAL
};
i2c_write_blocking(bmp->i2c.inst, bmp->i2c.addr, data_buffer, 2, false);
}
{
uint8_t status = 0x00;
while ((status & 0x60) != 0x60) {
uint8_t status_reg = BMP_STATUS_REG;
i2c_write_blocking(bmp->i2c.inst, bmp->i2c.addr, &status_reg, 1, true);
i2c_read_blocking(bmp->i2c.inst, bmp->i2c.addr, &status, 1, false);
sleep_ms(1);
}
}
res &= bmp_read_uncalibrated_temperature(bmp);
res &= bmp_read_uncalibrated_pressure(bmp);
res &= bmp_calibrate_temperature(bmp);
res &= bmp_calibrate_pressure(bmp);
res &= bmp_calculate_altitude(bmp);
return res;
}
bool bmp_init(bmp_t* bmp) {
i2c_init(bmp->i2c.inst, bmp->i2c.rate);
if (bmp->oss < 0 || bmp->oss > 5) {
#ifdef DEBUG
printf("Invalid over-sampling rate (%d). Valid 0 to 5.\n", bmp->oss);
#endif
return false;
}
gpio_set_function(bmp->i2c.scl, GPIO_FUNC_I2C);
gpio_set_function(bmp->i2c.sda, GPIO_FUNC_I2C);
gpio_pull_up(bmp->i2c.scl);
gpio_pull_up(bmp->i2c.sda);
sleep_ms(100);
ASSERT_OK(bmp_reset(bmp));
ASSERT_OK(bmp_check_chip_id(bmp));
ASSERT_OK(bmp_set_oversampling_rate(bmp));
ASSERT_OK(bmp_get_calib_coeffs(bmp));
return true;
}
bool bmp_get_temperature(bmp_t* bmp) {
return false;
}
bool bmp_get_pressure(bmp_t* bmp) {
return false;
}
#endif