-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
219 lines (169 loc) · 6.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# /usr/local/python3
# -*- coding: utf-8 -*-
# https://github.com/ti-ginkgo/MPIIFaceGaze/blob/master/main.py
import os
import sys
import argparse
import ast
import json
import time
import logging
import random
import numpy as np
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.utils
from models import GazeNet
from dataloader import get_loader
from utils import AverageMeter, compute_angle_error
global_step = 0
logging.basicConfig(
format='[%(asctime)s %(name)s %(levelname)s] - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.DEBUG)
logger = logging.getLogger(__name__)
def validate(args, epoch, model, criterion, test_loader):
global global_step
logger.info('Test {}'.format(epoch))
loss_meter = AverageMeter()
angle_error_meter = AverageMeter()
start = time.time()
for step, (images, gazes) in enumerate(test_loader):
if args.use_cuda:
images = images.cuda()
gazes = gazes.cuda()
with torch.no_grad():
outputs = model(images)
loss = criterion(outputs, gazes)
angle_error = compute_angle_error(outputs, gazes).mean()
num = images.size(0)
loss_meter.update(loss.item(), num)
angle_error_meter.update(angle_error.item(), num)
logger.info('Epoch {} Loss {:.4f} AngleError {:.2f}'.format(
epoch, loss_meter.avg, angle_error_meter.avg
))
elapsed = time.time() - start
logger.info('Elapsed {:.2f}'.format(elapsed))
return angle_error_meter.avg
def train(args, epoch, model, optimizer, criterion, train_loader):
global global_step
logger.info('Train {}'.format(epoch))
model.train()
loss_meter = AverageMeter()
angle_error_meter = AverageMeter()
start = time.time()
for step, (images, gazes) in enumerate(train_loader):
global_step += 1
if args.use_cuda:
images = images.cuda()
gazes = gazes.cuda()
# zero optimizer's gradient
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, gazes)
loss.backward()
optimizer.step()
angle_error = compute_angle_error(outputs, gazes).mean()
num = images.size(0)
loss_meter.update(loss.item(), num)
angle_error_meter.update(angle_error.item(), num)
print("Epoch {} Step {}/{} Loss {:.4f} Angle Error {:.2f}".format(epoch, step, len(train_loader), loss_meter.avg, angle_error_meter.avg))
if step % 10 == 0:
logger.info('Epoch {} Step {}/{}\t'
'Loss {:.4f} ({:.4f})\t'
'Angle Error {:.2f} ({:.2f})'.format(
epoch,
step,
len(train_loader),
loss_meter.val,
loss_meter.avg,
angle_error_meter.val,
angle_error_meter.avg,
))
print("Gaze[0:2]: ", gazes[0:2])
print("Output[0:2]: ", outputs[0:2])
elapsed = time.time() - start
logger.info('Elapsed {:.2f}'.format(elapsed))
def main(args):
"""
GazeNet was implemented using the Caffe library (Jia et al., 2014).
We used the weights of the 16-layer VGGNet (Simonyan and Zisserman, 2015) pretrained on ImageNet for all our evaluations, and fine-tuned the whole network in
15,000 iterations with a batch size of 256 on the training set. We used the Adam
solver (Kingma and Ba, 2015) with the two momentum values set to β1 = 0.9 and
β2 = 0.95. An initial learning rate of 0.00001 was used and multiplied by 0.1 after
every 5,000 iterations.
"""
global device
if args.use_cuda:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(json.dumps(vars(args), indent=2))
# set random seeds
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
outdir = args.outdir
if not os.path.exists(outdir):
os.makedirs(outdir)
# model configs json
outpath = os.path.join(outdir, 'config.json')
with open(outpath, 'w') as f:
json.dump(vars(args), f, indent=2)
train_loader, val_loader = get_loader(
args.dataset, args.test_id, args.batch_size, args.num_workers, True
)
model = GazeNet()
if args.use_cuda:
model.cuda()
#criterion = nn.MSELoss(size_average=True)
criterion = nn.L1Loss()
"""
optimizer = optim.SGD(
model.parameters(),
lr = args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
"""
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.95))
lr_scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, milestones=ast.literal_eval(args.milestones), gamma=args.lr_decay
)
validate(args, 0, model, criterion, val_loader)
for epoch in range(1, args.epochs+1):
# train and get validation error
train(args, epoch, model, optimizer, criterion, train_loader)
angle_error = validate(args, epoch, model, criterion, val_loader)
# lr decay
lr_scheduler.step()
state = OrderedDict([
('args', vars(args)),
('state_dict', model.state_dict()),
('optimizer', optimizer.state_dict()),
('epoch', epoch),
('angle_error', angle_error),
])
model_path = os.path.join(outdir, 'model_state.sth')
torch.save(state, model_path)
def arg_parser(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='/media/nvidia/HDLuiza/Dataset/Gaze/MPIIFaceGaze_normalizad')
parser.add_argument('--test_id', type=int, default=0)
parser.add_argument('--outdir', type=str, default='output')
parser.add_argument('--seed', type=int, default=6)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--epochs', type=int, default=30)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--nesterov', type=bool, default=True)
parser.add_argument('--milestones', type=str, default='[5, 10, 20, 30]')
parser.add_argument('--lr_decay', type=float, default=0.1)
parser.add_argument('--use_cuda', type=bool, default=True)
return parser.parse_args(argv)
if __name__ == "__main__":
main(arg_parser(sys.argv[1:]))