forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclosure_conversion.ml
executable file
·708 lines (694 loc) · 29.2 KB
/
closure_conversion.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Pierre Chambart, OCamlPro *)
(* Mark Shinwell and Leo White, Jane Street Europe *)
(* *)
(* Copyright 2013--2016 OCamlPro SAS *)
(* Copyright 2014--2016 Jane Street Group LLC *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
[@@@ocaml.warning "+a-4-9-30-40-41-42"]
module Env = Closure_conversion_aux.Env
module Function_decls = Closure_conversion_aux.Function_decls
module Function_decl = Function_decls.Function_decl
module IdentSet = Lambda.IdentSet
let name_expr = Flambda_utils.name_expr
type t = {
current_unit_id : Ident.t;
symbol_for_global' : (Ident.t -> Symbol.t);
filename : string;
mutable imported_symbols : Symbol.Set.t;
mutable declared_symbols : (Symbol.t * Flambda.constant_defining_value) list;
}
let add_default_argument_wrappers lam =
let defs_are_all_functions (defs : (_ * Lambda.lambda) list) =
List.for_all (function (_, Lambda.Lfunction _) -> true | _ -> false) defs
in
let f (lam : Lambda.lambda) : Lambda.lambda =
match lam with
| Llet (( Strict | Alias | StrictOpt), _k, id,
Lfunction {kind; params; body = fbody; attr; loc}, body) ->
begin match
Simplif.split_default_wrapper ~id ~kind ~params
~body:fbody ~attr ~loc
with
| [fun_id, def] -> Llet (Alias, Pgenval, fun_id, def, body)
| [fun_id, def; inner_fun_id, def_inner] ->
Llet (Alias, Pgenval, inner_fun_id, def_inner,
Llet (Alias, Pgenval, fun_id, def, body))
| _ -> assert false
end
| Lletrec (defs, body) as lam ->
if defs_are_all_functions defs then
let defs =
List.flatten
(List.map
(function
| (id, Lambda.Lfunction {kind; params; body; attr; loc}) ->
Simplif.split_default_wrapper ~id ~kind ~params ~body
~attr ~loc
| _ -> assert false)
defs)
in
Lletrec (defs, body)
else lam
| lam -> lam
in
Lambda.map f lam
(** Generate a wrapper ("stub") function that accepts a tuple argument and
calls another function with arguments extracted in the obvious
manner from the tuple. *)
let tupled_function_call_stub original_params unboxed_version
: Flambda.function_declaration =
let tuple_param_var =
Variable.rename ~append:"tupled_stub_param" unboxed_version
in
let params = List.map (fun p -> Variable.rename p) original_params in
let call : Flambda.t =
Apply ({
func = unboxed_version;
args = params;
(* CR-someday mshinwell for mshinwell: investigate if there is some
redundancy here (func is also unboxed_version) *)
kind = Direct (Closure_id.wrap unboxed_version);
dbg = Debuginfo.none;
inline = Default_inline;
specialise = Default_specialise;
})
in
let _, body =
List.fold_left (fun (pos, body) param ->
let lam : Flambda.named =
Prim (Pfield pos, [tuple_param_var], Debuginfo.none)
in
pos + 1, Flambda.create_let param lam body)
(0, call) params
in
let tuple_param = Parameter.wrap tuple_param_var in
Flambda.create_function_declaration ~params:[tuple_param]
~body ~stub:true ~dbg:Debuginfo.none ~inline:Default_inline
~specialise:Default_specialise ~is_a_functor:false
let register_const t (constant:Flambda.constant_defining_value) name
: Flambda.constant_defining_value_block_field * string =
let current_compilation_unit = Compilation_unit.get_current_exn () in
(* Create a variable to ensure uniqueness of the symbol *)
let var = Variable.create ~current_compilation_unit name in
let symbol =
Symbol.create current_compilation_unit
(Linkage_name.create (Variable.unique_name var))
in
t.declared_symbols <- (symbol, constant) :: t.declared_symbols;
Symbol symbol, name
let rec declare_const t (const : Lambda.structured_constant)
: Flambda.constant_defining_value_block_field * string =
match const with
| Const_base (Const_int c) -> Const (Int c), "int"
| Const_base (Const_char c) -> Const (Char c), "char"
| Const_base (Const_string (s, _)) ->
let const, name =
if Config.safe_string then
Flambda.Allocated_const (Immutable_string s), "immstring"
else Flambda.Allocated_const (String s), "string"
in
register_const t const name
| Const_base (Const_float c) ->
register_const t
(Allocated_const (Float (float_of_string c)))
"float"
| Const_base (Const_int32 c) ->
register_const t (Allocated_const (Int32 c)) "int32"
| Const_base (Const_int64 c) ->
register_const t (Allocated_const (Int64 c)) "int64"
| Const_base (Const_nativeint c) ->
register_const t (Allocated_const (Nativeint c)) "nativeint"
| Const_pointer c -> Const (Const_pointer c), "pointer"
| Const_immstring c ->
register_const t (Allocated_const (Immutable_string c)) "immstring"
| Const_float_array c ->
register_const t
(Allocated_const (Immutable_float_array (List.map float_of_string c)))
"float_array"
| Const_block (tag, consts) ->
let const : Flambda.constant_defining_value =
Block (Tag.create_exn tag,
List.map (fun c -> fst (declare_const t c)) consts)
in
register_const t const "const_block"
let close_const t (const : Lambda.structured_constant)
: Flambda.named * string =
match declare_const t const with
| Const c, name ->
Const c, name
| Symbol s, name ->
Symbol s, name
let rec close t env (lam : Lambda.lambda) : Flambda.t =
match lam with
| Lvar id ->
begin match Env.find_var_exn env id with
| var -> Var var
| exception Not_found ->
match Env.find_mutable_var_exn env id with
| mut_var -> name_expr (Read_mutable mut_var) ~name:"read_mutable"
| exception Not_found ->
Misc.fatal_errorf "Closure_conversion.close: unbound identifier %a"
Ident.print id
end
| Lconst cst ->
let cst, name = close_const t cst in
name_expr cst ~name:("const_" ^ name)
| Llet ((Strict | Alias | StrictOpt), _value_kind, id, defining_expr, body) ->
(* TODO: keep value_kind in flambda *)
let var = Variable.create_with_same_name_as_ident id in
let defining_expr =
close_let_bound_expression t var env defining_expr
in
let body = close t (Env.add_var env id var) body in
Flambda.create_let var defining_expr body
| Llet (Variable, block_kind, id, defining_expr, body) ->
let mut_var = Mutable_variable.of_ident id in
let var = Variable.create_with_same_name_as_ident id in
let defining_expr =
close_let_bound_expression t var env defining_expr
in
let body = close t (Env.add_mutable_var env id mut_var) body in
Flambda.create_let var defining_expr
(Let_mutable
{ var = mut_var;
initial_value = var;
body;
contents_kind = block_kind })
| Lfunction { kind; params; body; attr; loc; } ->
let name =
(* Name anonymous functions by their source location, if known. *)
if loc = Location.none then "anon-fn"
else Format.asprintf "anon-fn[%a]" Location.print_compact loc
in
let closure_bound_var = Variable.create name in
(* CR-soon mshinwell: some of this is now very similar to the let rec case
below *)
let set_of_closures_var = Variable.create ("set_of_closures_" ^ name) in
let set_of_closures =
let decl =
Function_decl.create ~let_rec_ident:None ~closure_bound_var ~kind
~params ~body ~attr ~loc
in
close_functions t env (Function_decls.create [decl])
in
let project_closure : Flambda.project_closure =
{ set_of_closures = set_of_closures_var;
closure_id = Closure_id.wrap closure_bound_var;
}
in
Flambda.create_let set_of_closures_var set_of_closures
(name_expr (Project_closure (project_closure))
~name:("project_closure_" ^ name))
| Lapply { ap_func; ap_args; ap_loc; ap_should_be_tailcall = _;
ap_inlined; ap_specialised; } ->
Lift_code.lifting_helper (close_list t env ap_args)
~evaluation_order:`Right_to_left
~name:"apply_arg"
~create_body:(fun args ->
let func = close t env ap_func in
let func_var = Variable.create "apply_funct" in
Flambda.create_let func_var (Expr func)
(Apply ({
func = func_var;
args;
kind = Indirect;
dbg = Debuginfo.from_location ap_loc;
inline = ap_inlined;
specialise = ap_specialised;
})))
| Lletrec (defs, body) ->
let env =
List.fold_right (fun (id, _) env ->
Env.add_var env id (Variable.create_with_same_name_as_ident id))
defs env
in
let function_declarations =
(* Identify any bindings in the [let rec] that are functions. These
will be named after the corresponding identifier in the [let rec]. *)
List.map (function
| (let_rec_ident,
Lambda.Lfunction { kind; params; body; attr; loc }) ->
let closure_bound_var =
Variable.create_with_same_name_as_ident let_rec_ident
in
let function_declaration =
Function_decl.create ~let_rec_ident:(Some let_rec_ident)
~closure_bound_var ~kind ~params ~body
~attr ~loc
in
Some function_declaration
| _ -> None)
defs
in
begin match
Misc.Stdlib.List.some_if_all_elements_are_some function_declarations
with
| Some function_declarations ->
(* When all the bindings are (syntactically) functions, we can
eliminate the [let rec] construction, instead producing a normal
[Let] that binds a set of closures containing all of the functions.
*)
(* CR-someday lwhite: This is a very syntactic criteria. Adding an
unused value to a set of recursive bindings changes how
functions are represented at runtime. *)
let name =
(* The Microsoft assembler has a 247-character limit on symbol
names, so we keep them shorter to try not to hit this. *)
if Sys.win32 then begin
match defs with
| (id, _)::_ -> (Ident.unique_name id) ^ "_let_rec"
| _ -> "let_rec"
end else begin
String.concat "_and_"
(List.map (fun (id, _) -> Ident.unique_name id) defs)
end
in
let set_of_closures_var = Variable.create name in
let set_of_closures =
close_functions t env (Function_decls.create function_declarations)
in
let body =
List.fold_left (fun body decl ->
let let_rec_ident = Function_decl.let_rec_ident decl in
let closure_bound_var = Function_decl.closure_bound_var decl in
let let_bound_var = Env.find_var env let_rec_ident in
(* Inside the body of the [let], each function is referred to by
a [Project_closure] expression, which projects from the set of
closures. *)
(Flambda.create_let let_bound_var
(Project_closure {
set_of_closures = set_of_closures_var;
closure_id = Closure_id.wrap closure_bound_var;
})
body))
(close t env body) function_declarations
in
Flambda.create_let set_of_closures_var set_of_closures body
| None ->
(* If the condition above is not satisfied, we build a [Let_rec]
expression; any functions bound by it will have their own
individual closures. *)
let defs =
List.map (fun (id, def) ->
let var = Env.find_var env id in
var, close_let_bound_expression t ~let_rec_ident:id var env def)
defs
in
Let_rec (defs, close t env body)
end
| Lsend (kind, meth, obj, args, loc) ->
let meth_var = Variable.create "meth" in
let obj_var = Variable.create "obj" in
let dbg = Debuginfo.from_location loc in
Flambda.create_let meth_var (Expr (close t env meth))
(Flambda.create_let obj_var (Expr (close t env obj))
(Lift_code.lifting_helper (close_list t env args)
~evaluation_order:`Right_to_left
~name:"send_arg"
~create_body:(fun args ->
Send { kind; meth = meth_var; obj = obj_var; args; dbg; })))
| Lprim ((Pdivint Safe | Pmodint Safe
| Pdivbint { is_safe = Safe } | Pmodbint { is_safe = Safe }) as prim,
[arg1; arg2], loc)
when not !Clflags.fast -> (* not -unsafe *)
let arg2 = close t env arg2 in
let arg1 = close t env arg1 in
let numerator = Variable.create "numerator" in
let denominator = Variable.create "denominator" in
let zero = Variable.create "zero" in
let is_zero = Variable.create "is_zero" in
let exn = Variable.create "division_by_zero" in
let exn_symbol =
t.symbol_for_global' Predef.ident_division_by_zero
in
let dbg = Debuginfo.from_location loc in
let zero_const : Flambda.named =
match prim with
| Pdivint _ | Pmodint _ ->
Const (Int 0)
| Pdivbint { size = Pint32 } | Pmodbint { size = Pint32 } ->
Allocated_const (Int32 0l)
| Pdivbint { size = Pint64 } | Pmodbint { size = Pint64 } ->
Allocated_const (Int64 0L)
| Pdivbint { size = Pnativeint } | Pmodbint { size = Pnativeint } ->
Allocated_const (Nativeint 0n)
| _ -> assert false
in
let prim : Lambda.primitive =
match prim with
| Pdivint _ -> Pdivint Unsafe
| Pmodint _ -> Pmodint Unsafe
| Pdivbint { size } -> Pdivbint { size; is_safe = Unsafe }
| Pmodbint { size } -> Pmodbint { size; is_safe = Unsafe }
| _ -> assert false
in
let comparison : Lambda.primitive =
match prim with
| Pdivint _ | Pmodint _ -> Pintcomp Ceq
| Pdivbint { size } | Pmodbint { size } -> Pbintcomp (size,Ceq)
| _ -> assert false
in
t.imported_symbols <- Symbol.Set.add exn_symbol t.imported_symbols;
Flambda.create_let zero zero_const
(Flambda.create_let exn (Symbol exn_symbol)
(Flambda.create_let denominator (Expr arg2)
(Flambda.create_let numerator (Expr arg1)
(Flambda.create_let is_zero
(Prim (comparison, [zero; denominator], dbg))
(If_then_else (is_zero,
name_expr (Prim (Praise Raise_regular, [exn], dbg))
~name:"dummy",
(* CR-someday pchambart: find the right event.
mshinwell: I briefly looked at this, and couldn't
figure it out.
lwhite: I don't think any of the existing events
are suitable. I had to add a new one for a similar
case in the array data types work.
mshinwell: deferred CR *)
name_expr ~name:"result"
(Prim (prim, [numerator; denominator], dbg))))))))
| Lprim ((Pdivint Safe | Pmodint Safe
| Pdivbint { is_safe = Safe } | Pmodbint { is_safe = Safe }), _, _)
when not !Clflags.fast ->
Misc.fatal_error "Pdivint / Pmodint must have exactly two arguments"
| Lprim (Psequor, [arg1; arg2], _) ->
let arg1 = close t env arg1 in
let arg2 = close t env arg2 in
let const_true = Variable.create "const_true" in
let cond = Variable.create "cond_sequor" in
Flambda.create_let const_true (Const (Const_pointer 1))
(Flambda.create_let cond (Expr arg1)
(If_then_else (cond, Var const_true, arg2)))
| Lprim (Psequand, [arg1; arg2], _) ->
let arg1 = close t env arg1 in
let arg2 = close t env arg2 in
let const_false = Variable.create "const_false" in
let cond = Variable.create "cond_sequand" in
Flambda.create_let const_false (Const (Const_pointer 0))
(Flambda.create_let cond (Expr arg1)
(If_then_else (cond, arg2, Var const_false)))
| Lprim ((Psequand | Psequor), _, _) ->
Misc.fatal_error "Psequand / Psequor must have exactly two arguments"
| Lprim (Pidentity, [arg], _) -> close t env arg
| Lprim (Pdirapply, [funct; arg], loc)
| Lprim (Prevapply, [arg; funct], loc) ->
let apply : Lambda.lambda_apply =
{ ap_func = funct;
ap_args = [arg];
ap_loc = loc;
ap_should_be_tailcall = false;
(* CR-someday lwhite: it would be nice to be able to give
inlined attributes to functions applied with the application
operators. *)
ap_inlined = Default_inline;
ap_specialised = Default_specialise;
}
in
close t env (Lambda.Lapply apply)
| Lprim (Praise kind, [arg], loc) ->
let arg_var = Variable.create "raise_arg" in
let dbg = Debuginfo.from_location loc in
Flambda.create_let arg_var (Expr (close t env arg))
(name_expr
(Prim (Praise kind, [arg_var], dbg))
~name:"raise")
| Lprim (Pfield _, [Lprim (Pgetglobal id, [],_)], _)
when Ident.same id t.current_unit_id ->
Misc.fatal_errorf "[Pfield (Pgetglobal ...)] for the current compilation \
unit is forbidden upon entry to the middle end"
| Lprim (Psetfield (_, _, _), [Lprim (Pgetglobal _, [], _); _], _) ->
Misc.fatal_errorf "[Psetfield (Pgetglobal ...)] is \
forbidden upon entry to the middle end"
| Lprim (Pgetglobal id, [], _) when Ident.is_predef_exn id ->
let symbol = t.symbol_for_global' id in
t.imported_symbols <- Symbol.Set.add symbol t.imported_symbols;
name_expr (Symbol symbol) ~name:"predef_exn"
| Lprim (Pgetglobal id, [], _) ->
assert (not (Ident.same id t.current_unit_id));
let symbol = t.symbol_for_global' id in
t.imported_symbols <- Symbol.Set.add symbol t.imported_symbols;
name_expr (Symbol symbol) ~name:"Pgetglobal"
| Lprim (p, args, loc) ->
(* One of the important consequences of the ANF-like representation
here is that we obtain names corresponding to the components of
blocks being made (with [Pmakeblock]). This information can be used
by the simplification pass to increase the likelihood of eliminating
the allocation, since some field accesses can be tracked back to known
field values. *)
let name = Printlambda.name_of_primitive p in
let dbg = Debuginfo.from_location loc in
Lift_code.lifting_helper (close_list t env args)
~evaluation_order:`Right_to_left
~name:(name ^ "_arg")
~create_body:(fun args ->
name_expr (Prim (p, args, dbg))
~name)
| Lswitch (arg, sw, _loc) ->
let scrutinee = Variable.create "switch" in
let aux (i, lam) = i, close t env lam in
let nums sw_num cases default =
let module I = Numbers.Int in
match default with
| Some _ ->
I.zero_to_n (sw_num - 1)
| None ->
List.fold_left (fun set (i, _) -> I.Set.add i set) I.Set.empty cases
in
Flambda.create_let scrutinee (Expr (close t env arg))
(Switch (scrutinee,
{ numconsts = nums sw.sw_numconsts sw.sw_consts sw.sw_failaction;
consts = List.map aux sw.sw_consts;
numblocks = nums sw.sw_numblocks sw.sw_blocks sw.sw_failaction;
blocks = List.map aux sw.sw_blocks;
failaction = Misc.may_map (close t env) sw.sw_failaction;
}))
| Lstringswitch (arg, sw, def, _) ->
let scrutinee = Variable.create "string_switch" in
Flambda.create_let scrutinee (Expr (close t env arg))
(String_switch (scrutinee,
List.map (fun (s, e) -> s, close t env e) sw,
Misc.may_map (close t env) def))
| Lstaticraise (i, args) ->
Lift_code.lifting_helper (close_list t env args)
~evaluation_order:`Right_to_left
~name:"staticraise_arg"
~create_body:(fun args ->
let static_exn = Env.find_static_exception env i in
Static_raise (static_exn, args))
| Lstaticcatch (body, (i, ids), handler) ->
let st_exn = Static_exception.create () in
let env = Env.add_static_exception env i st_exn in
let vars = List.map (Variable.create_with_same_name_as_ident) ids in
Static_catch (st_exn, vars, close t env body,
close t (Env.add_vars env ids vars) handler)
| Ltrywith (body, id, handler) ->
let var = Variable.create_with_same_name_as_ident id in
Try_with (close t env body, var, close t (Env.add_var env id var) handler)
| Lifthenelse (cond, ifso, ifnot) ->
let cond = close t env cond in
let cond_var = Variable.create "cond" in
Flambda.create_let cond_var (Expr cond)
(If_then_else (cond_var, close t env ifso, close t env ifnot))
| Lsequence (lam1, lam2) ->
let var = Variable.create "sequence" in
let lam1 = Flambda.Expr (close t env lam1) in
let lam2 = close t env lam2 in
Flambda.create_let var lam1 lam2
| Lwhile (cond, body) -> While (close t env cond, close t env body)
| Lfor (id, lo, hi, direction, body) ->
let bound_var = Variable.create_with_same_name_as_ident id in
let from_value = Variable.create "for_from" in
let to_value = Variable.create "for_to" in
let body = close t (Env.add_var env id bound_var) body in
Flambda.create_let from_value (Expr (close t env lo))
(Flambda.create_let to_value (Expr (close t env hi))
(For { bound_var; from_value; to_value; direction; body; }))
| Lassign (id, new_value) ->
let being_assigned =
match Env.find_mutable_var_exn env id with
| being_assigned -> being_assigned
| exception Not_found ->
Misc.fatal_errorf "Closure_conversion.close: unbound mutable \
variable %s in assignment"
(Ident.unique_name id)
in
let new_value_var = Variable.create "new_value" in
Flambda.create_let new_value_var (Expr (close t env new_value))
(Assign { being_assigned; new_value = new_value_var; })
| Levent (lam, _) -> close t env lam
| Lifused _ ->
(* [Lifused] is used to mark that this expression should be alive only if
an identifier is. Every use should have been removed by
[Simplif.simplify_lets], either by replacing by the inner expression,
or by completely removing it (replacing by unit). *)
Misc.fatal_error "[Lifused] should have been removed by \
[Simplif.simplify_lets]"
(** Perform closure conversion on a set of function declarations, returning a
set of closures. (The set will often only contain a single function;
the only case where it cannot is for "let rec".) *)
and close_functions t external_env function_declarations : Flambda.named =
let closure_env_without_parameters =
Function_decls.closure_env_without_parameters
external_env function_declarations
in
let all_free_idents = Function_decls.all_free_idents function_declarations in
let close_one_function map decl =
let body = Function_decl.body decl in
let loc = Function_decl.loc decl in
let dbg = Debuginfo.from_location loc in
let params = Function_decl.params decl in
(* Create fresh variables for the elements of the closure (cf.
the comment on [Function_decl.closure_env_without_parameters], above).
This induces a renaming on [Function_decl.free_idents]; the results of
that renaming are stored in [free_variables]. *)
let closure_env =
List.fold_right (fun id env ->
Env.add_var env id (Variable.create_with_same_name_as_ident id))
params closure_env_without_parameters
in
(* If the function is the wrapper for a function with an optional
argument with a default value, make sure it always gets inlined.
CR-someday pchambart: eta-expansion wrapper for a primitive are
not marked as stub but certainly should *)
let stub = Function_decl.stub decl in
let param_vars = List.map (Env.find_var closure_env) params in
let params = List.map Parameter.wrap param_vars in
let closure_bound_var = Function_decl.closure_bound_var decl in
let body = close t closure_env body in
let fun_decl =
Flambda.create_function_declaration ~params ~body ~stub ~dbg
~inline:(Function_decl.inline decl)
~specialise:(Function_decl.specialise decl)
~is_a_functor:(Function_decl.is_a_functor decl)
in
match Function_decl.kind decl with
| Curried -> Variable.Map.add closure_bound_var fun_decl map
| Tupled ->
let unboxed_version = Variable.rename closure_bound_var in
let generic_function_stub =
tupled_function_call_stub param_vars unboxed_version
in
Variable.Map.add unboxed_version fun_decl
(Variable.Map.add closure_bound_var generic_function_stub map)
in
let function_decls =
Flambda.create_function_declarations
~funs:
(List.fold_left close_one_function Variable.Map.empty
(Function_decls.to_list function_declarations))
in
(* The closed representation of a set of functions is a "set of closures".
(For avoidance of doubt, the runtime representation of the *whole set* is
a single block with tag [Closure_tag].) *)
let set_of_closures =
let free_vars =
IdentSet.fold (fun var map ->
let internal_var =
Env.find_var closure_env_without_parameters var
in
let external_var : Flambda.specialised_to =
{ var = Env.find_var external_env var;
projection = None;
}
in
Variable.Map.add internal_var external_var map)
all_free_idents Variable.Map.empty
in
Flambda.create_set_of_closures ~function_decls ~free_vars
~specialised_args:Variable.Map.empty
~direct_call_surrogates:Variable.Map.empty
in
Set_of_closures set_of_closures
and close_list t sb l = List.map (close t sb) l
and close_let_bound_expression t ?let_rec_ident let_bound_var env
(lam : Lambda.lambda) : Flambda.named =
match lam with
| Lfunction { kind; params; body; attr; loc; } ->
(* Ensure that [let] and [let rec]-bound functions have appropriate
names. *)
let closure_bound_var = Variable.rename let_bound_var in
let decl =
Function_decl.create ~let_rec_ident ~closure_bound_var ~kind ~params
~body ~attr ~loc
in
let set_of_closures_var =
Variable.rename let_bound_var ~append:"_set_of_closures"
in
let set_of_closures =
close_functions t env (Function_decls.create [decl])
in
let project_closure : Flambda.project_closure =
{ set_of_closures = set_of_closures_var;
closure_id = Closure_id.wrap closure_bound_var;
}
in
Expr (Flambda.create_let set_of_closures_var set_of_closures
(name_expr (Project_closure (project_closure))
~name:(Variable.unique_name let_bound_var)))
| lam -> Expr (close t env lam)
let lambda_to_flambda ~backend ~module_ident ~size ~filename lam
: Flambda.program =
let lam = add_default_argument_wrappers lam in
let module Backend = (val backend : Backend_intf.S) in
let compilation_unit = Compilation_unit.get_current_exn () in
let t =
{ current_unit_id = Compilation_unit.get_persistent_ident compilation_unit;
symbol_for_global' = Backend.symbol_for_global';
filename;
imported_symbols = Symbol.Set.empty;
declared_symbols = [];
}
in
let module_symbol = Backend.symbol_for_global' module_ident in
let block_symbol =
let linkage_name = Linkage_name.create "module_as_block" in
Symbol.create compilation_unit linkage_name
in
(* The global module block is built by accessing the fields of all the
introduced symbols. *)
(* CR-soon mshinwell for mshinwell: Add a comment describing how modules are
compiled. *)
let fields =
Array.init size (fun pos ->
let pos_str = string_of_int pos in
let sym_v = Variable.create ("block_symbol_" ^ pos_str) in
let result_v = Variable.create ("block_symbol_get_" ^ pos_str) in
let value_v = Variable.create ("block_symbol_get_field_" ^ pos_str) in
Flambda.create_let
sym_v (Symbol block_symbol)
(Flambda.create_let result_v
(Prim (Pfield 0, [sym_v], Debuginfo.none))
(Flambda.create_let value_v
(Prim (Pfield pos, [result_v], Debuginfo.none))
(Var value_v))))
in
let module_initializer : Flambda.program_body =
Initialize_symbol (
block_symbol,
Tag.create_exn 0,
[close t Env.empty lam],
Initialize_symbol (
module_symbol,
Tag.create_exn 0,
Array.to_list fields,
End module_symbol))
in
let program_body =
List.fold_left
(fun program_body (symbol, constant) : Flambda.program_body ->
Let_symbol (symbol, constant, program_body))
module_initializer
t.declared_symbols
in
{ imported_symbols = t.imported_symbols;
program_body;
}