forked from ucsffrancislab/REdiscoverTE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREdiscoverTEdata_README.html
167 lines (146 loc) · 5.23 KB
/
REdiscoverTEdata_README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<title>REdiscoverTEdata_README.utf8.md</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
</head>
<body>
<style type="text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<div class="container-fluid main-container">
<!-- tabsets -->
<div class="fluid-row" id="header">
</div>
<div id="rediscovertedata" class="section level1">
<h1>REdiscoverTEdata</h1>
<p>Author: <em>Haiyin Chen</em></p>
<p>Date: <em>2019-09</em></p>
</div>
<div id="overview" class="section level1">
<h1>Overview</h1>
<p>This R package enables reproducibility of main figures from the paper TRANSPOSABLE ELEMENT EXPRESSION IN TUMORS IS ASSOCIATED WITH IMMUNE INFILTRATION AND INCREASED ANTIGENICITY by <code>Kong Y, ..., Chen-Harris H (2019)</code>.</p>
</div>
<div id="contents" class="section level1">
<h1>Contents</h1>
<p><code>REdiscoverTEdata</code> is an <code>R</code> package that can be installed locally. It contains source R Markdown (<code>.Rmd</code>) files for five main figures from the paper. Each <code>Rmd</code> file can generate one set of figures, either in HTML format or PDF format.</p>
</div>
<div id="installation-process" class="section level1">
<h1>Installation Process</h1>
<ol style="list-style-type: decimal">
<li>Install <code>R</code> as described at <a href="https://www.r-project.org/">https://www.r-project.org/</a>. <code>REdiscoverTEdata</code> has been tested with <code>R 3.4.3</code>, <code>R 3.5.1</code>.</li>
<li>Install <code>RStudio</code>, which we recommend using to process .Rmd files into final figures. <code>RStudio</code> can be downloaded from <a href="https://www.rstudio.com/">https://www.rstudio.com/</a>.</li>
<li>Install the <code>REdiscoverTEdata</code> package (library) locally with the following:
<ul>
<li><code>cd /your/DOWNLOADS/directory/</code></li>
<li><code>tar -xvf REdiscoverTEdata.tar.gz</code> (uncompress the downloaded archive)</li>
<li><code>R CMD INSTALL REdiscoverTEdata</code></li>
</ul></li>
</ol>
<ul>
<li>That command should automatically install the prerequisite libraries. You will find the <code>.Rmd</code> files for each figure in the <code>REdiscoverTEdata/inst/</code> subdirectory.</li>
</ul>
</div>
<div id="list-of-r-modules-used-by-rediscoverte" class="section level1">
<h1>List of R modules used by REdiscoverTE</h1>
<ul>
<li>Biobase</li>
<li>ComplexHeatmap</li>
<li>circlize</li>
<li>dplyr</li>
<li>DT</li>
<li>GenomicRanges</li>
<li>ggplot2</li>
<li>ggrepel</li>
<li>grid</li>
<li>gridExtra</li>
<li>knitr</li>
<li>multiGSEA (not a CRAN package, see below)</li>
<li>plyr</li>
<li>RColorBrewer</li>
<li>rmarkdown</li>
<li>stats</li>
</ul>
<p><code>multiGSEA</code> is available on github at <a href="https://github.com/lianos/multiGSEA" class="uri">https://github.com/lianos/multiGSEA</a> (you may need to install this manually depending on the version of R and bioconductor you are using)</p>
</div>
<div id="reproducing-figures-from-the-paper" class="section level1">
<h1>Reproducing figures from the paper</h1>
<ul>
<li>Once <code>REdiscoverTEdata</code> is installed to your <code>R</code> library directory, you can launch <code>RStudio</code> and, from within <code>RStudio</code>, open any of the following <code>.Rmd</code> (R Markdown) files.
<ul>
<li><code>REdiscoverTEdata/inst/Figure_1.Rmd</code></li>
<li><code>REdiscoverTEdata/inst/Figure_2.Rmd</code></li>
<li><code>REdiscoverTEdata/inst/Figure_3.Rmd</code></li>
<li><code>REdiscoverTEdata/inst/Figure_4.Rmd</code></li>
<li><code>REdiscoverTEdata/inst/Figure_5.Rmd</code></li>
</ul></li>
<li>Once an <code>.Rmd</code> file is open in <code>RStudio</code>, you can <code>knit</code> it (convert it to a figure) as follows:
<ul>
<li><code>File Menu</code> -> <code>Knit Document</code></li>
<li>alternatively, you can click on the “Knit” submenu and select <code>Knit to HTML</code> or <code>Knit to PDF</code>.</li>
</ul></li>
<li>The output from the <code>knit</code> operation will be an HTML (or PDF) file with the same name as the <code>.Rmd</code>, in the same directory.</li>
</ul>
</div>
<div id="tcga-te-expression-matrix" class="section level1">
<h1>TCGA TE expression matrix</h1>
<ul>
<li>TCGA TE expression matrix for 7000+ samples and 1000+ TE subfamilies can be found in the subdirectory <code>REdiscoverTEdata/inst/Fig4_data/</code> under the filename <code>eset_TCGA_TE_intergenic_logCPM.RDS</code>. The matrix is stored in the form of ExpressionSet, a data structure class defined in the <code>Biobase</code> package.</li>
</ul>
</div>
</div>
</body>
</html>