forked from prajwalsingh/EEG2Image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
96 lines (80 loc) · 3.26 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import tensorflow as tf
# from utils import vis, load_batch#, load_data
from utils import load_complete_data, show_batch_images
from model import DCGAN, dist_train_step#, train_step
from tqdm import tqdm
import os
import shutil
import pickle
from glob import glob
from natsort import natsorted
import wandb
import numpy as np
import cv2
tf.random.set_seed(45)
np.random.seed(45)
# wandb.init(project='DCGAN_DiffAug_EDDisc_imagenet_128', entity="prajwal_15")
os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'
os.environ["CUDA_DEVICE_ORDER"]= "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]= '1'
clstoidx = {}
idxtocls = {}
# @tf.function
def get_code(path):
path = path.numpy().decode('utf-8')
code = np.zeros(shape=(max(clstoidx.values())+1,), dtype=np.float32)
code[clstoidx[path.split(sep='/')[-2]]] = 1
return tf.cast(code, dtype=tf.float32)
if __name__ == '__main__':
# if len(glob('experiments/*'))==0:
# os.makedirs('experiments/experiment_1/code/')
# exp_num = 1
# else:
# exp_num = len(glob('experiments/*'))+1
# os.makedirs('experiments/experiment_{}/code/'.format(exp_num))
# exp_dir = 'experiments/experiment_{}'.format(exp_num)
# for item in glob('*.py'):
# shutil.copy(item, exp_dir+'/code')
gpus = tf.config.list_physical_devices('GPU')
mirrored_strategy = tf.distribute.MirroredStrategy(devices=['/GPU:0'],
cross_device_ops=tf.distribute.HierarchicalCopyAllReduce())
n_gpus = mirrored_strategy.num_replicas_in_sync
# print(n_gpus)
batch_size = 64
latent_dim = 128
input_res = 64
data_path = 'data/images/ImageNet-Filtered/*/*'
train_batch = load_complete_data(data_path, input_res=input_res, batch_size=batch_size)
X, latent_Y = next(iter(train_batch))
# print(latent_Y)
latent_Y = latent_Y[:16]
lr = 3e-4
with mirrored_strategy.scope():
model = DCGAN()
model_gopt = tf.keras.optimizers.Adam(learning_rate=lr, beta_1=0.2, beta_2=0.5)
model_copt = tf.keras.optimizers.Adam(learning_rate=lr, beta_1=0.2, beta_2=0.5)
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=model, gopt=model_gopt, copt=model_copt)
ckpt_manager = tf.train.CheckpointManager(ckpt, directory='experiments/best_ckpt', max_to_keep=30)
ckpt.restore(ckpt_manager.latest_checkpoint).expect_partial()
# print(ckpt.step.numpy())
START = int(ckpt.step.numpy()) // len(train_batch) + 1
EPOCHS = 1000#670#66
model_freq = 14#200#40
t_visfreq = 14#200#1500#40
if ckpt_manager.latest_checkpoint:
print('Restored from last checkpoint epoch: {0}'.format(START))
for clidx in tqdm(range(10)):
code = np.zeros(shape=(10,), dtype=np.float32)
code[clidx] = 1
code = np.expand_dims(code, axis=0)
code = tf.cast(code, dtype=tf.float32)
if not os.path.isdir('experiments/inference_result/{}'.format(clidx)):
os.makedirs('experiments/inference_result/{}'.format(clidx))
for _ in tqdm(range(256)):
latent = tf.random.uniform(shape=(1, latent_dim), minval=-1, maxval=1)
latent = tf.concat([latent, code], axis=-1)
fake_img = mirrored_strategy.run(model.gen, args=(latent,))
fake_img = fake_img[0].numpy()
fake_img = np.uint8(np.clip(255*(fake_img * 0.5 + 0.5), 0.0, 255.0))
fake_img = cv2.cvtColor(fake_img, cv2.COLOR_RGB2BGR)
cv2.imwrite('experiments/inference_result/{}/{}.png'.format(clidx, _), fake_img)