This repository has been archived by the owner on Feb 2, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
261 lines (226 loc) · 9.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import multiprocessing as mp
import cv2
import glob
import librerias_patrones as lib_pat
from sklearn.metrics import confusion_matrix as CM
def extraction_routine(arr_name, lbp_grids, lbp_dists, har_grids, har_dists, gab_grids1, gab_grids2):
"""
Saves to arr_name .npy the array of features extracted.
Params MUST be tuples, use (1,) for single values
:param lbp_grids: tuple
:param lbp_dists: tuple, must be the same size than ibp_grids
:param har_grids: idem
:param har_dists: idem
:param gab_grids1: idem
:param gab_grids1: idem
:return: void
"""
names = lib_pat.get_img_names(240)
# path = './faces2/*.png'
# names = glob.glob(path)
images = [cv2.imread(names[i], 0) for i in range(len(names))]
lbps = []
for i in range(len(lbp_grids)):
print('LPB Extraction, Iteration {}/{}'.format((i + 1), len(lbp_grids)))
with mp.Pool() as p:
print("|-----------------------------------------------------|")
lbp = p.starmap(lib_pat.get_LBP, [(images[j], lbp_dists[i], lbp_grids[i], j) for j in range(len(images))])
print(" ")
lbps.append(lbp)
lbp_feats = np.concatenate(lbps, axis=1)
hars = []
for i in range(len(har_grids)):
print('Haralick Extraction, Iteration {}/{}'.format((i + 1), len(har_grids)))
with mp.Pool() as p:
print("|-----------------------------------------------------|")
har = p.starmap(lib_pat.get_Haralick, [(images[j], har_dists[i], har_grids[i], j) for j in range(len(images))])
print(" ")
hars.append(har)
har_feats = np.concatenate(hars, axis=1)
gabs1 = []
for i in range(len(gab_grids1)):
print('Gabor Extraction, Iteration {}/{}'.format((i + 1), len(gab_grids1)))
with mp.Pool() as p:
print("|-----------------------------------------------------|")
gab = p.starmap(lib_pat.get_Gab, [(images[j], gab_grids1[i], j) for j in range(len(images))])
print(" ")
gabs1.append(gab)
gab_feats1 = np.concatenate(gabs1, axis=1)
gabs2 = []
for i in range(len(gab_grids2)):
print('Gabor Extraction, Iteration {}/{}'.format((i + 1), len(gab_grids2)))
with mp.Pool() as p:
print("|-----------------------------------------------------|")
gab = p.starmap(lib_pat.get_Gab_real_im, [(images[j], gab_grids2[i], j) for j in range(len(images))])
print(" ")
gabs2.append(gab)
gab_feats2 = np.concatenate(gabs2, axis=1)
feats = np.concatenate((lbp_feats, har_feats, gab_feats1, gab_feats2), axis=1)
np.save(arr_name, feats)
return feats
def generate_labels(lbp_grids, har_grids, gab_grids1, gab_grids2):
# lbp 59
# har 52
# gab1 96
# gab2 192
# tas 27
c = 0
labels = []
for i in lbp_grids:
for j in range(i ** 2):
labels.append(c * np.ones(59, np.dtype(int)))
c += 1
for i in har_grids:
for j in range(i ** 2):
labels.append(c * np.ones(52, np.dtype(int)))
c += 1
for i in gab_grids1:
for j in range(i ** 2):
labels.append(c * np.ones(96, np.dtype(int)))
c += 1
for i in gab_grids2:
for j in range(i ** 2):
labels.append(c * np.ones(192, np.dtype(int)))
c += 1
lab = np.concatenate(labels)
return lab
def generate_labels_landmarks(start_index, landmarks, lbp_grids, har_grids, tas_grids):
# lbp 59
# har 52
# tas 27
c = start_index
labels = []
for i in range(landmarks*len(lbp_grids)):
labels.append(c * np.ones(59, np.dtype(int)))
c += 1
for i in range(len(har_grids)):
labels.append(c * np.ones(52, np.dtype(int)))
c += 1
# for i in range(6):
# labels.append(c * np.ones(27, np.dtype(int)))
# c += 1
# labels.append(c * np.ones(27, np.dtype(int)))
lab = np.concatenate(labels)
return lab
def red_routine_per_batch2(X, separate_ratio, pca_ratio=.99, cantidad = 240, separate_list = []):
"""
Takes a batch of features and expands them with kpca and pca. then performs a RFECV selection.
:param X:
:param y:
:param kpca_ratio:
:param pca_ratio:
:param cv_folds_num:
:param rfecv_step:
:return: X_tr, X_te, index
"""
n = len(X[0])
X_tr, X_te, y_tr, y_te, sep_list = lib_pat.separate_train_test(X, separate_ratio, cantidad, separate_list = separate_list)
pca_tr, pca_te = lib_pat.dim_red_auto_PCA(X_tr, X_te, pca_ratio)
return pca_tr, pca_te
def reduction_routine(feats, labels, separate_ratio, ratio=.99, ammount = 240, separate_list = []):
"""
Reduces the number of features by appling PCA to every set of features for every window.
:param feats:
:param labels:
:param ratio:
:return:
"""
f_tr = []
f_te = []
print(labels)
n = np.max(labels) + 1
# print('feature redution routine...')
# print("|--------------------------------|")
for i in range(n):
# print('Iteration {}/{}'.format(i, n))
# if (i % 10 == 0):
# print("|", end = "", flush = True)
index = labels == i
if np.count_nonzero(index) == 0:
continue
X = feats[:, index]
tr, te = red_routine_per_batch2(X, separate_ratio, ratio, ammount, separate_list = separate_list)
f_tr.append(tr)
f_te.append(te)
# print(" ")
X_tr = np.concatenate(f_tr, axis=1)
X_te = np.concatenate(f_te, axis=1)
print(X_tr.shape, X_te.shape)
return X_tr, X_te
if __name__ == '__main__':
"""
Comentando y descomentando se pueden
extraer = True, False
true para la primera vez
set = {1,2,3,4}
"""
dataset = 4
extraer = False
cantidad = 240
print('Extracting and/or reading features...')
if dataset == 1:
lbp_params = ((1, 2, 2, 5), (5, 8, 15, 6))
har_params = ((1, 1, 2, 5), ( ))
gab1_params = (1,)
gab2_params = (1, 5, 10)
if extraer:
extraction_routine('raw_features', lbp_params[0], lbp_params[1],
har_params[0], har_params[1], gab1_params, gab2_params)
feats = np.load('raw_features.npy')
elif dataset == 2:
lbp_params = ((1, 2, 2, 5), (5, 8, 15, 6))
har_params = ((1, 1, 2, 5), (1, 20, 11, 8))
gab1_params = (1, 2, 5)
gab2_params = (1, 2, 5)
if extraer:
extraction_routine('big_raw_features', lbp_params[0], lbp_params[1],
har_params[0], har_params[1], gab1_params, gab2_params)
feats = np.load('big_raw_features.npy')
elif dataset == 3:
lbp_params = ((1, 2, 2, 5), (5, 8, 15, 6))
har_params = ((1, 1, 2, 5), (1, 20, 11, 8))
gab1_params = (1, 2, 5)
gab2_params = (1, 2, 5, 10)
if extraer:
extraction_routine('huge_raw_features', lbp_params[0], lbp_params[1],
har_params[0], har_params[1], gab1_params, gab2_params)
feats = np.load('huge_raw_features.npy')
elif dataset == 4:
lbp_params = ((1, 1, 2, 2, 5), (5, 10, 8, 15, 6))
har_params = ((1, 1, 1, 2, 5), (1, 10, 20, 11, 8))
gab1_params = (1, 2, 5, 10)
gab2_params = (1, 2, 5, 10)
if extraer:
extraction_routine('very_huge_raw_features', lbp_params[0], lbp_params[1],
har_params[0], har_params[1], gab1_params, gab2_params)
feats = np.load('very_huge_raw_features.npy')
else:
quit()
labels = generate_labels(lbp_params[0], har_params[0], gab1_params, gab2_params)
# np.save('standard_labels', labels)
# quit()
print('Removing features with low variance')
feats, labels = lib_pat.delete_zero_variance_features(feats, labels, 0.1)
print('Separating Features...')
X_tr, X_te, y_tr, y_te = lib_pat.separate_train_test(feats, 0.8, cantidad)
print('Reducing features by transformation')
X_tr, X_te = reduction_routine(feats, labels, .99, cantidad)
print('Final reduction (for no colinear features)')
X_tr, X_te = lib_pat.dim_red_auto_PCA(X_tr, X_te, ratio=.9)
# print('Classification via KNN 9')
# k1 = lib_pat.classification_knn(X_tr, X_te, y_tr, y_te, 9)
# print('Classification via SVC linear')
# k2 = lib_pat.classification_SVM(X_tr, X_te, y_tr, y_te, kernel='linear')
# print('Classification via SVC poli')
# k3 = lib_pat.classification_SVM(X_tr, X_te, y_tr, y_te, kernel='poly', degree=3)
print('Classification via LDA solver=svd')
k4 = lib_pat.classification_LDA(X_tr, X_te, y_tr, y_te, solver='svd')
print('Classification via MLP')
k5 = lib_pat.classification_LDA(X_tr, X_te, y_tr, y_te)
# np.savetxt('k1', CM(y_te, k1), fmt='%2i', delimiter=',')
# np.savetxt('k2', CM(y_te, k2), fmt='%2i', delimiter=',')
# np.savetxt('k3', CM(y_te, k3), fmt='%2i', delimiter=',')
np.savetxt('k4', CM(y_te, k4), fmt='%2i', delimiter=',')
np.savetxt('k5', CM(y_te, k5), fmt='%2i', delimiter=',')
quit()