This repository has been archived by the owner on Feb 2, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathold_librerias_patrones.py
896 lines (782 loc) · 28.7 KB
/
old_librerias_patrones.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
import time
import multiprocessing as mp
import numpy as np
from sklearn.decomposition import PCA, KernelPCA, TruncatedSVD
from sklearn.feature_selection import RFECV, SelectKBest, chi2, f_classif, mutual_info_classif
from sklearn.model_selection import StratifiedKFold
from sklearn.svm import SVC, LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS
import skimage
from skimage.feature import local_binary_pattern, hog
from skimage.filters import gabor
from skimage import io
from mahotas.features import haralick, pftas
import mahotas
import cv2
debug = True
def get_LBP(image_array, radius=1, grid_size=1):
"""
LBP para una imagen. 59 bins
:param image_array:
:param radius:
:param grid_size:
:return:
"""
p = 8
img = np.asarray(image_array)
window_size = (np.asarray([img.shape]) / grid_size).astype(int)[0]
im_grid = np.asarray(skimage.util.view_as_blocks(img, tuple(window_size)))
windows = []
for i in range(grid_size):
for j in range(grid_size):
windows.append(im_grid[i, j])
lbp_features = []
for i in range(len(windows)):
hist = np.histogram(local_binary_pattern(windows[i], p, radius, method='nri_uniform'), bins=59, density=True)[0]
lbp_features.append(hist)
out = np.ravel(np.asarray(lbp_features))
return out
def get_Haralick(im_arr, dist=1, grid_size=1):
"""
Haralick para una imagen.
:param im_arr:
:param dist:
:param grid_size:
:return: 13*4*grid_size^2 array length
"""
img = np.asarray(im_arr).astype(int)
img = mahotas.stretch(img, 31)
window_size = (np.asarray([img.shape]) / grid_size).astype(int)[0]
im_grid = np.asarray(skimage.util.view_as_blocks(img, tuple(window_size)))
windows = []
for i in range(grid_size):
for j in range(grid_size):
windows.append(im_grid[i, j])
haralick_features = []
for i in range(len(windows)):
h = haralick(windows[i], distance=dist)
h = np.ravel(np.asarray(h))
haralick_features.append(h)
out = np.ravel(np.asarray(haralick_features))
return out
def get_Gab(img_array, grid_size=1):
"""
Gabor filters.
:param im_path:
:param grid_size:
:return:
"""
img = np.asarray(img_array)
window_size = (np.asarray([img.shape]) / grid_size).astype(int)[0]
im_grid = np.asarray(skimage.util.view_as_blocks(img, tuple(window_size)))
windows = []
for i in range(grid_size):
for j in range(grid_size):
windows.append(im_grid[i, j])
freq_step = np.sqrt(2)
or_step = np.pi / 4.
gab_feat = []
for i in range(len(windows)):
for j in range(6): # frequencies
for k in range(8): # orientations
a = gabor(windows[i], frequency=(.25 / (freq_step ** j)), theta=k * or_step, sigma_x=1,
sigma_y=1)
b = np.sqrt(a[0] ** 2 + a[1] ** 2)
mean = np.mean(b)
std = np.std(b)
if mean == np.inf: mean = 0
if std == np.inf: std = 0
gab_feat.append(mean)
gab_feat.append(std)
out = np.ravel(np.asarray(gab_feat))
return out
def get_Gab_real_im(img_array, grid_size=1):
"""
Gabor filters, not combining real an imaginary parts
:param im_path:
:param grid_size:
:return:
"""
img = np.asarray(img_array)
window_size = (np.asarray([img.shape]) / grid_size).astype(int)[0]
im_grid = np.asarray(skimage.util.view_as_blocks(img, tuple(window_size)))
windows = []
for i in range(grid_size):
for j in range(grid_size):
windows.append(im_grid[i, j])
freq_step = np.sqrt(2)
or_step = np.pi / 4.
gab_feat = []
for i in range(len(windows)):
for j in range(6): # frequencies
for k in range(8): # orientations
a = gabor(windows[i], frequency=(.25 / (freq_step ** j)), theta=k * or_step, sigma_x=1,
sigma_y=1)
mean1 = np.mean(a[0])
mean2 = np.mean(a[1])
std1 = np.std(a[0])
std2 = np.std(a[1])
if mean1 == np.inf: mean1 = 0
if mean2 == np.inf: mean2 = 0
if std1 == np.inf: std1 = 0
if std2 == np.inf: std2 = 0
gab_feat.append(mean1)
gab_feat.append(mean2)
gab_feat.append(std1)
gab_feat.append(std2)
out = np.ravel(np.asarray(gab_feat))
return out
def get_TAS(img_array, grid_size=4):
"""
Parameterless TAS for one image.
:param img_array:
:param grid_size:
:return: 27* grid_size^2 (check)
"""
img = np.asarray(img_array)
window_size = (np.asarray([img.shape])[0:2] / grid_size).astype(int)[0]
im_grid = np.asarray(skimage.util.view_as_blocks(img, tuple([window_size[0], window_size[1], 3])))
windows = []
for i in range(grid_size):
for j in range(grid_size):
windows.append(im_grid[i, j, 0])
tas_features = []
for i in range(len(windows)):
t = pftas(windows[i])
t = np.ravel(np.asarray(t))
tas_features.append(t)
out = np.ravel(np.asarray(tas_features))
return out
def get_HoG(im_path, grid_size=4):
"""
Histogram of Gradients para una imagen. Low level, quizás no debería usar...
:param im_path:
:param grid_size:
:return:
"""
img_array = io.imread(im_path, True)
img = np.asarray(img_array)
window_size = (np.asarray([img.shape]) / grid_size).astype(int)[0]
im_grid = np.asarray(skimage.util.view_as_blocks(img, tuple(window_size)))
windows = []
# print(im_grid[0, 0].shape)
for i in range(grid_size):
for j in range(grid_size):
windows.append(im_grid[i, j])
hog_features = []
for i in range(len(windows)):
hist = hog(windows[i])
hog_features.append(hist)
out = np.ravel(np.asarray(hog_features))
return out
def dim_red_PCA(tr_feat_matrix, te_feat_matrix, num_feat=100):
"""
PCA dimensionality reduction, fixed amount of features.
:param tr_feat_matrix:
:param te_feat_matrix:
:param num_feat:
:return:
"""
pca = PCA(n_components=num_feat)
pca.fit(tr_feat_matrix)
training_matrix = pca.transform(tr_feat_matrix)
testing_matrix = pca.transform(te_feat_matrix)
return training_matrix, testing_matrix
def dim_red_auto_PCA(tr_feat_matrix, te_feat_matrix, ratio=.995):
"""
PCA dimensionality reduction, fixed explained variance.
:param tr_feat_matrix:
:param te_feat_matrix:
:param ratio:
:return:
"""
pca = PCA()
pca.fit(tr_feat_matrix)
exp = 0.
count = 0
for i in range(len(tr_feat_matrix)):
exp += pca.explained_variance_ratio_[i]
if exp >= ratio:
count = i + 1
break
training_matrix = np.asarray(pca.transform(tr_feat_matrix))[:, 0:count]
testing_matrix = np.asarray(pca.transform(te_feat_matrix))[:, 0:count]
return training_matrix, testing_matrix
def dim_red_KPCA(tr_feat_matrix, te_feat_matrix, num_feat=100, ker='cosine', gamma=-1):
"""
KPCA dimensionality reduction, fixed number of features.
:param tr_feat_matrix:
:param te_feat_matrix:
:param num_feat:
:return:
"""
if gamma <= 0:
kpca = KernelPCA(kernel=ker, n_components=num_feat)
else:
kpca = KernelPCA(kernel=ker, n_components=num_feat, gamma=gamma)
training_matrix = kpca.fit_transform(tr_feat_matrix)
testing_matrix = kpca.transform(te_feat_matrix)
return training_matrix, testing_matrix
def dim_red_auto_KPCA(tr, te, ratio=.99, verbose=False, ker='cosine'):
"""
KPCA dimensionality reduction, fixed explained variance (through eigenvalues sum ratio)
:param tr:
:param te:
:param ratio:
:param verbose:
:return:
"""
kpca = KernelPCA(kernel=ker, n_jobs=1)
tr_out = kpca.fit_transform(tr)
te_out = kpca.transform(te)
t = np.sum(kpca.lambdas_)
aux = 0
index = 0
for i in range(len(kpca.lambdas_)):
if aux / t >= ratio:
index = i
if verbose: print('yeah!', index)
break
aux += kpca.lambdas_[i]
index = i
if verbose:
for i in kpca.lambdas_:
print(i)
return tr_out[:, 0:index], te_out[:, 0:index]
def dim_red_TSDV(tr_feat_matrix, te_feat_matrix, num_feat=100):
"""
Dimensionality reduction via truncated singular value decomposition aka. Latent semantic analysis
:param tr_feat_matrix:
:param te_feat_matrix:
:param num_feat:
:return:
"""
tsdv = TruncatedSVD(n_components=num_feat)
training = tsdv.fit_transform(tr_feat_matrix)
testing = tsdv.transform(te_feat_matrix)
return training, testing
def dim_red_auto_TSDV(tr_feat_matrix, te_feat_matrix, ratio=.99):
"""
Dimensionality reducticion via truncated singular value decomposition. aka latent semantics analysis
:param tr_feat_matrix:
:param te_feat_matrix:
:param ratio:
:return:
"""
tsdv = TruncatedSVD(n_components=len(tr_feat_matrix[0]) - 1)
training = tsdv.fit_transform(tr_feat_matrix)
exp = 0.
count = 0
for i in range(len(tr_feat_matrix)):
exp += tsdv.explained_variance_ratio_[i]
if exp >= ratio:
count = i + 1
break
tsdv = TruncatedSVD(n_components=count)
training = tsdv.fit_transform(tr_feat_matrix)
testing = tsdv.transform(te_feat_matrix)
return training, testing
def select_SFS(X_tr, y_tr, num_feat=100, knn_parameter=1, forward_=False, floating_=True):
"""
Secuential Feature Selection
:param X_tr:
:param y_tr:
:param num_feat:
:param knn_parameter:
:param forward_:
:param floating_:
:return:
"""
X = X_tr
y = y_tr
knn = KNeighborsClassifier(n_neighbors=knn_parameter)
sfs1 = SFS(knn,
k_features=(1, num_feat),
forward=forward_,
floating=floating_,
verbose=1,
scoring='accuracy',
cv=3,
n_jobs=4)
sfs1 = sfs1.fit(X, y)
out = sfs1.k_feature_idx_
return np.asarray(out)
def select_RFECV(X_tr, y_tr, k, step_=1):
"""
Recursive feature elimination and cross-validated selection
:param X_tr: training set
:param y_tr: target
:param estimator: object to score
:param k: number of folds
:param step_:
:return:
"""
X = X_tr
y = y_tr
estimator = SVC(kernel='linear')
estimator.fit(X, y)
print('bla')
rfecv = RFECV(estimator, step=step_, n_jobs=4, cv=k, verbose=1, scoring='accuracy')
print('ble')
rfecv.fit(X, y)
return np.nonzero(np.asarray(rfecv.ranking_) == 1)[0]
def select_secuential_RFECV(tr):
index = select_RFECV(tr, 1000)
index = select_RFECV(tr[:, index], 100)
index = select_RFECV(tr[:, index], 10)
return index
def select_RFECV_scoring(tr, step, num_cicles):
"""
Scores training features based on how many times they got selected by RFECV
:param tr:
:param step:
:param num_cicles:
:return:
"""
scores = np.zeros(len(tr[0]), dtype=int)
print('Starting Scoring')
for i in range(num_cicles):
print('iter num:', i + 1, '/', num_cicles)
spam = select_RFECV(tr, step)
for j in spam:
scores[j] += 1
return scores
def select_RFECV_scoring_return_best(tr, te, max_num_feat, scores):
c = np.max(scores)
resp = np.zeros(len(scores), dtype=int)
for i in range(c):
curr = c - i
index = np.nonzero(scores == curr)
if len(np.union1d(index, resp)) < max_num_feat:
resp = np.union1d(index, resp)
else:
dif = np.intersect1d(np.setdiff1d(index, resp), resp)
n = max_num_feat - len(resp)
resp = np.union1d(resp, dif[:n])
break
return tr[:, resp], te[:, resp]
def select_RFECV_scoring_return_frac(tr, te, frac, scores):
c = np.max(scores)
resp = np.zeros(len(scores), dtype=int)
for i in range(c):
curr = c - i
index = np.nonzero(scores == curr)
if len(np.union1d(index, resp)) < int(np.ceil(frac * len(scores))):
resp = np.union1d(index, resp)
else:
dif = np.intersect1d(np.setdiff1d(index, resp), resp)
n = int(np.ceil(frac * len(scores))) - len(resp)
resp = np.union1d(resp, dif[:n])
break
return tr[:, resp], te[:, resp]
def select_iterative_RFECV(tr, step, iters):
scores = select_RFECV_scoring(tr, step, iters)
return np.nonzero(scores != 0)[0]
def select_KBest(training, num_feat=100, mutual_info_classif_=False):
X = training
y = [i for i in range(9) for j in range(60)]
if mutual_info_classif_:
c = mutual_info_classif
else:
c = f_classif
SKB = SelectKBest(c, num_feat)
SKB.fit(X, y)
return SKB.get_support(True)
def select_KBest_trees(training, num_feat=100, n_est_trees=15, num_runs=10):
X = training
y = [i for i in range(9) for j in range(60)]
scores = np.zeros(len(training[0]), dtype=float)
for i in range(num_runs):
print('fitting trees iter num:', i + 1, '/', num_runs)
c = ExtraTreesClassifier(n_estimators=n_est_trees)
c.fit(X, y)
scores += c.feature_importances_
support = np.zeros(len(training[0]))
mn = np.min(scores)
for i in range(num_feat):
m = np.argmax(scores)
support[m] = 1
scores[m] = mn
index = np.nonzero(support == 1)[0]
return index
def select_EFS(tr, num_feat=100):
X = tr
y = [i for i in range(9) for j in range(60)]
knn = KNeighborsClassifier(n_neighbors=1)
efs = EFS(knn, min_features=num_feat, max_features=num_feat, cv=5, n_jobs=4)
efs.fit(X, y)
out = efs.best_idx_
return out
def feat_extraction_routine():
lbp_grid1 = 4
lbp_dist1 = 10
lbp_grid2 = 7
lbp_dist2 = 3
lbp_grid3 = 2
lbp_dist3 = 19
har_grid1 = 4
har_dist1 = 2
har_grid2 = 2
har_dist2 = 15
har_grid3 = 1
har_dist3 = 4
tas_grid1 = 2
tas_grid2 = 4
hog_grid = 2
gab_grid1 = 4
gab_grid2 = 7
# get images
names = [('fotos/face_' + str(i + 1).zfill(2) + '_' + str(j + 1).zfill(2) + '.png')
for i in range(60) for j in range(10)]
im_arrays = []
for i in range(len(names)):
im_arrays.append(np.asarray(mahotas.imread(names[i], True)))
# im_arrays = np.asarray(im_arrays)
labels = np.array([])
labels2 = np.array([])
counter = 0
with mp.Pool() as p:
tt = time.time()
if debug: print("Extracting LBP1")
f_lbp1 = p.starmap(get_LBP, [(i, lbp_dist1, lbp_grid1) for i in im_arrays])
u1 = [i for i in range(lbp_grid1 ** 2) for j in range(int(len(f_lbp1[0]) / lbp_grid1 ** 2))]
v1 = np.ones(len(f_lbp1[0]), dtype=int) * 0
if debug: print('LBP time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting LBP2")
f_lbp2 = p.starmap(get_LBP, [(i, lbp_dist2, lbp_grid2) for i in im_arrays])
counter = np.max(u1) + 1
u2 = ([(counter + i) for i in range(lbp_grid2 ** 2) for j in range(int(len(f_lbp2[0]) / lbp_grid2 ** 2))])
v2 = np.ones(len(f_lbp2[0]), dtype=int) * 1
if debug: print('LBP time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting LBP3")
f_lbp3 = p.starmap(get_LBP, [(i, lbp_dist3, lbp_grid3) for i in im_arrays])
counter = np.max(u2) + 1
u3 = ([(counter + i) for i in range(lbp_grid3 ** 2) for j in range(int(len(f_lbp3[0]) / lbp_grid3 ** 2))])
v3 = np.ones(len(f_lbp3[0]), dtype=int) * 2
if debug: print('LBP time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting Haralick1")
f_har1 = p.starmap(get_Haralick, [(i, har_dist1, har_grid1) for i in im_arrays])
counter = np.max(u3) + 1
u4 = ([(counter + i) for i in range(har_grid1 ** 2) for j in range(int(len(f_har1[0]) / har_grid1 ** 2))])
v4 = np.ones(len(f_har1[0]), dtype=int) * 3
if debug: print('Haralick time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting Haralick2")
f_har2 = p.starmap(get_Haralick, [(i, har_dist2, har_grid2) for i in im_arrays])
counter = np.max(u4) + 1
u5 = ([(counter + i) for i in range(har_grid2 ** 2) for j in range(int(len(f_har2[0]) / har_grid2 ** 2))])
v5 = np.ones(len(f_har2[0]), dtype=int) * 4
if debug: print('Haralick time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting Haralick3")
f_har3 = p.starmap(get_Haralick, [(i, har_dist3, har_grid3) for i in im_arrays])
counter = np.max(u5) + 1
u6 = ([(counter + i) for i in range(har_grid3 ** 2) for j in range(int(len(f_har3[0]) / har_grid3 ** 2))])
v6 = np.ones(len(f_har3[0]), dtype=int) * 5
if debug: print('Haralick time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting TAS1")
f_tas1 = p.starmap(get_TAS, [(i, tas_grid1) for i in names])
counter = np.max(u6) + 1
u7 = ([(counter + i) for i in range(tas_grid1 ** 2) for j in range(int(len(f_tas1[0]) / tas_grid1 ** 2))])
v7 = np.ones(len(f_tas1[0]), dtype=int) * 6
if debug: print('TAS time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting TAS2")
f_tas2 = p.starmap(get_TAS, [(i, tas_grid2) for i in names])
counter = np.max(u7) + 1
u8 = ([(counter + i) for i in range(tas_grid2 ** 2) for j in range(int(len(f_tas2[0]) / tas_grid2 ** 2))])
v8 = np.ones(len(f_tas2[0]), dtype=int) * 7
if debug: print('TAS time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting Gabor1")
f_gab1 = p.starmap(get_Gab, [(i, gab_grid1) for i in names])
counter = np.max(u8) + 1
u9 = ([(counter + i) for i in range(gab_grid1 ** 2) for j in range(int(len(f_gab1[0]) / gab_grid1 ** 2))])
v9 = np.ones(len(f_gab1[0]), dtype=int) * 8
if debug: print('Gab time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting Gabor2")
f_gab2 = p.starmap(get_Gab, [(i, gab_grid2) for i in names])
counter = np.max(u9) + 1
u10 = ([(counter + i) for i in range(gab_grid2 ** 2) for j in range(int(len(f_gab2[0]) / gab_grid2 ** 2))])
v10 = np.ones(len(f_gab2[0]), dtype=int) * 9
if debug: print('Gab time: ', str(time.time() - tt))
tt = time.time()
if debug: print("Extracting HoG")
f_hog = p.starmap(get_HoG, [(i, hog_grid) for i in names])
counter = np.max(u10) + 1
u11 = ([(counter + i) for i in range(hog_grid ** 2) for j in range(int(len(f_hog[0]) / hog_grid ** 2))])
v11 = np.ones(len(f_hog[0]), dtype=int) * 10
if debug: print('Hog time: ', str(time.time() - tt))
labels = np.concatenate((u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11))
labels2 = np.concatenate((v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11))
l = np.asarray([labels, labels2])
features = []
for i in range(len(im_arrays)):
features.append(np.concatenate((f_lbp1[i], f_lbp2[i], f_lbp3[i], f_har1[i], f_har2[i],
f_har3[i], f_tas1[i], f_tas2[i], f_gab1[i], f_gab2[i],
f_hog[i])).astype('float32'))
return np.asarray(features), l
def feature_normalization(f):
"""
Normalize Feature Matrix
:param f: Feature Matrix
:return: Normalized Feature Matrix
"""
f = np.asarray(f)
for i in range(len(f[0])):
f[:, i] = (f[:, i] - np.mean(f[:, i])) / (np.std(f[:, i]) + 0.00001)
return f
def delete_zero_variance_features(f, l, tol):
"""
Removes features with std below threshold
:param f: features matrix
:param l: labels
:param tol: float
:return: f, l
"""
index = np.std(f, axis=0) > tol
print(np.count_nonzero(index == False), "features removed.")
return f[:, index], l[index]
def feature_variance_trim(f, l, r_to_trim):
"""
Trims the r% of features of less variance
:param f: Feature Matrix
:param l: labels
:param r_to_trim: Ratio to be trimmed
:return: Feature matrix trimmed in its original order
"""
r = r_to_trim
vars = np.std(f, axis=0)
index = np.argsort(vars)
to_trim = int(len(vars) * r)
index = index[to_trim:]
index = np.sort(index)
return f[:, index], l[:, index]
def classification_knn(X_tr, X_te, y_tr, y_te, neighbors_param=3):
"""
KNN classification
:param X_tr:
:param X_te:
:param y_tr:
:param y_te:
:param neighbors_param:
:return:
"""
knn = KNeighborsClassifier(n_neighbors=neighbors_param, n_jobs=-1)
knn.fit(X_tr, y_tr)
results = knn.predict(X_te)
print('accuracy: ', knn.score(X_te, y_te))
return results
def classification_SVM(X_tr, X_te, y_tr, y_te, kernel='linear', _C=1, degree=3):
"""
Support Vector Machine Classificator, RBF kernel
:param X_tr:
:param X_te:
:param y_tr:
:param y_te:
:return: prediction for X_te
"""
if kernel == 'poly':
svm = SVC(kernel=kernel, C=_C, degree=degree)
else:
svm = SVC(kernel=kernel, C=_C)
svm.fit(X_tr, y_tr)
print('accuracy:', svm.score(X_te, y_te))
return svm.predict(X_te)
def classification_LDA(X_tr, X_te, y_tr, y_te, solver='lsqr'):
"""
Linear Discriminant Analysis classification
:param X_tr:
:param X_te:
:param y_tr:
:param y_te:
:param solver:
:return:
"""
if solver == 'svd':
lda = LDA(solver=solver)
else:
lda = LDA(solver=solver, shrinkage='auto')
lda.fit(X_tr, y_tr)
results = lda.predict(X_te)
print('accuracy:', lda.score(X_te, y_te))
return results
# ----------------------------------------------------------------------------------------------------------------------
def separate_train_test(feats):
"""
Separates the database in training and testing groups. Also labels the pictures.
:param feats: Feature matrix
:return: X_train, X_test, y_train, y_test
"""
train = np.array([i for i in range(240 * 7)], np.dtype(int)) % 240 < 200
test = np.array([i for i in range(240 * 7)], np.dtype(int)) % 240 >= 200
y = np.array([i for i in range(1, 8) for j in range(240)])
X_train = feats[train]
X_test = feats[test]
y_train = y[train]
y_test = y[test]
return X_train, X_test, y_train, y_test
def get_img_names():
names_list = [('faces/face_' + str(i).zfill(3) + '_' + str(j).zfill(5) + '.png')
for i in range(1, 8) for j in range(1, 241)]
return names_list
def extraction_routine_LBP(arr_name, lbp_grids, lbp_dists):
""" ONLY LBP
Saves to arr_name .npy the array of features extracted.
Params MUST be tuples, use (1,) for single values
:param lbp_grids: tuple
:param lbp_dists: tuple, must be the same size than ibp_grids
:return: void
"""
names = get_img_names()
images = [cv2.imread(names[i], 0) for i in range(len(names))]
lbps = []
for i in range(len(lbp_grids)):
print('Iteration{}/{}'.format((i + 1), len(lbp_grids)))
with mp.Pool() as p:
lbp = p.starmap(get_LBP, [(images[j], lbp_dists[i], lbp_grids[i]) for j in range(len(images))])
lbps.append(lbp)
lbp_feats = np.concatenate(lbps, axis=1)
np.save(arr_name, lbp_feats)
return
def extraction_routine_HAR(arr_name, lbp_grids, lbp_dists):
""" ONLY HAR
Saves to arr_name .npy the array of features extracted.
Params MUST be tuples, use (1,) for single values
:param lbp_grids: tuple
:param lbp_dists: tuple, must be the same size than ibp_grids
:return: void
"""
names = get_img_names()
images = [cv2.imread(names[i], 0) for i in range(len(names))]
lbps = []
for i in range(len(lbp_grids)):
print('Iteration {}/{}'.format(str((i + 1)).zfill(2), str(len(lbp_grids)).zfill(2)))
with mp.Pool() as p:
lbp = p.starmap(get_Haralick, [(images[j], lbp_dists[i], lbp_grids[i]) for j in range(len(images))])
lbps.append(lbp)
lbp_feats = np.concatenate(lbps, axis=1)
np.save(arr_name, lbp_feats)
return
def extraction_routine_GAB_1(arr_name, gab_grids):
""" ONLY HAR
Saves to arr_name .npy the array of features extracted.
Params MUST be tuples, use (1,) for single values
:param lbp_grids: tuple
:param lbp_dists: tuple, must be the same size than ibp_grids
:return: void
"""
names = get_img_names()
images = [cv2.imread(names[i], 0) for i in range(len(names))]
lbps = []
for i in range(len(gab_grids)):
print('Iteration {}/{}'.format(str((i + 1)).zfill(2), str(len(gab_grids)).zfill(2)))
with mp.Pool() as p:
lbp = p.starmap(get_Gab, [(images[j], gab_grids[i]) for j in range(len(images))])
lbps.append(lbp)
lbp_feats = np.concatenate(lbps, axis=1)
np.save(arr_name, lbp_feats)
return lbp_feats
def extraction_routine_GAB_2(arr_name, gab_grids):
""" ONLY HAR
Saves to arr_name .npy the array of features extracted.
Params MUST be tuples, use (1,) for single values
:param lbp_grids: tuple
:param lbp_dists: tuple, must be the same size than ibp_grids
:return: void
"""
names = get_img_names()
images = [cv2.imread(names[i], 0) for i in range(len(names))]
lbps = []
for i in range(len(gab_grids)):
print('Iteration {}/{}'.format(str((i + 1)).zfill(2), str(len(gab_grids)).zfill(2)))
with mp.Pool() as p:
lbp = p.starmap(get_Gab_real_im, [(images[j], gab_grids[i]) for j in range(len(images))])
lbps.append(lbp)
lbp_feats = np.concatenate(lbps, axis=1)
np.save(arr_name, lbp_feats)
return lbp_feats
def feat_parameter_test_routine_1():
"""
For LBP
:return:
"""
n = 10
dist_tuple = tuple(range(1, 21))
extraction_routine_LBP('feats', (n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n), dist_tuple)
feats = np.load('feats.npy')
print(len(feats[0]))
for i in range(20):
index = np.array(range(int((n ** 2) * (i * 59)), int((n ** 2) * ((i + 1) * 59))), np.dtype(int))
if i == 0: print(len(index) * 2 * 10)
matrix = feats[:, index]
X_train, X_test, y_tr, y_te = separate_train_test(matrix)
X_tr, X_te = dim_red_auto_PCA(X_train, X_test, .995)
print(dist_tuple[i])
k = classification_knn(X_tr, X_te, y_tr, y_te, 3)
def feat_parameter_test_routine_2():
"""
For Haralick
:return:
"""
n = 2
dist_tuple = tuple(range(1, 21))
extraction_routine_HAR('feats', (n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n, n), dist_tuple)
feats = np.load('feats.npy')
print(len(feats[0]))
for i in range(20):
index = np.array(range(int((n ** 2) * (i * 52)), int((n ** 2) * ((i + 1) * 52))), np.dtype(int))
if i == 0: print(len(index) * 2 * 10)
matrix = feats[:, index]
X_train, X_test, y_tr, y_te = separate_train_test(matrix)
X_tr, X_te = dim_red_auto_PCA(X_train, X_test, .99)
print(dist_tuple[i])
k = classification_knn(X_tr, X_te, y_tr, y_te, 3)
return
def feat_parameter_test_routine_3():
"""
For normal gabor
:return:
"""
n = 2
dist_tuple = (1, 2, 5, 10)
extraction_routine_GAB_1('feats', dist_tuple)
feats = np.load('feats.npy')
print(len(feats[0]))
for i in range(4):
index = np.array(range(int((n ** 2) * (i * 96)), int((n ** 2) * ((i + 1) * 96))), np.dtype(int))
if i == 0: print(len(index) * 2 * 10)
matrix = feats[:, index]
X_train, X_test, y_tr, y_te = separate_train_test(matrix)
X_tr, X_te = dim_red_auto_PCA(X_train, X_test, .99)
print(dist_tuple[i])
k = classification_knn(X_tr, X_te, y_tr, y_te, 3)
return
def feat_parameter_test_routine_4():
"""
For real and imaginary gabor
:return:
"""
n = 2
dist_tuple = (1, 2, 5, 10)
extraction_routine_GAB_2('feats', dist_tuple)
feats = np.load('feats.npy')
print(len(feats[0]))
for i in range(4):
index = np.array(range(int((n ** 2) * (i * 192)), int((n ** 2) * ((i + 1) * 192))), np.dtype(int))
if i == 0: print(len(index) * 2 * 10)
matrix = feats[:, index]
X_train, X_test, y_tr, y_te = separate_train_test(matrix)
X_tr, X_te = dim_red_auto_PCA(X_train, X_test, .99)
print(dist_tuple[i])
k = classification_knn(X_tr, X_te, y_tr, y_te, 3)
return