-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOCR_API.py
167 lines (139 loc) · 5.61 KB
/
OCR_API.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from difflib import SequenceMatcher
from flask import Flask, redirect, request, jsonify
from flask_cors import CORS, cross_origin
from flask_ngrok import run_with_ngrok
import numpy as np
import pandas as pd
import csv, cv2, json, pytesseract, sys
# Initialize the app
app = Flask(__name__)
cors = CORS(app)
run_with_ngrok(app)
def error_handle(error_message, code=1, status=500, mimetype='application/json'):
return Response(json.dumps({"success" : False, "message": error_message, "data": { "modelname": "" }, "code": code }), status=status, mimetype=mimetype)
def success_handle(output, status=200, mimetype='application/json'):
return Response(output, status=status, mimetype=mimetype)
def checkDim(image):
dimensions = image.shape
if dimensions[0] < 990 or dimensions[1] < 1600 :
return error_handle("Input Image should be of minimum dimensions 990*1600!")
return cv2.resize(image, (1600, 991), interpolation = cv2.INTER_AREA)
def automatic_brightness_and_contrast(image, clip_hist_percent=1):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
hist = cv2.calcHist([gray],[0],None,[256],[0,256])
hist_size = len(hist)
accumulator = []
accumulator.append(float(hist[0]))
for index in range(1, hist_size):
accumulator.append(accumulator[index -1] + float(hist[index]))
maximum = accumulator[-1]
clip_hist_percent *= (maximum/100.0)
clip_hist_percent /= 2.0
minimum_gray = 0
while accumulator[minimum_gray] < clip_hist_percent:
minimum_gray += 1
maximum_gray = hist_size -1
while accumulator[maximum_gray] >= (maximum - clip_hist_percent):
maximum_gray -= 1
alpha = 255 / (maximum_gray - minimum_gray)
beta = -minimum_gray * alpha
auto_result = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
return auto_result
def preprocess(image):
img = checkDim(image)
auto_result = automatic_brightness_and_contrast(img)
gray_image = cv2.cvtColor(auto_result, cv2.COLOR_BGR2GRAY)
median = cv2.medianBlur(gray_image,9)
blur = cv2.GaussianBlur(gray_image, (3,3), 0)
ret, thresh2 = cv2.threshold(blur, 120, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
kernel = np.ones((5,5), np.uint8)
dilation = cv2.dilate(thresh2, kernel, iterations=1)
return (median, dilation, img)
def extract(median, dilation, csvfile):
col_list = ["Field", "Text", "Conf"]
with open(csvFile, 'r') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
df = csv.DictReader(csv_file, usecols=col_list)
lc = 0
for row in csv_reader:
if lc > 0 :
x=int(row[3])
xw=int(row[4])
y=int(row[5])
yh=int(row[6])
text1 = pytesseract.image_to_string( median[y:yh, x:xw] )
text3 = pytesseract.image_to_string( dilation[y:yh, x:xw] )
arr1 = [3, 4]
# arr2 = [1, 2, 7, 9]
arr3 = [5, 6, 8, 10]
if lc in arr1 :
text=text1
elif lc in arr3 :
text=text3
else:
text=""
row[1]=text
lc+=1
return json.dumps(df)
@app.route('/')
def welcome():
return '''
Welcome!
'''
@app.route('/index')
def index():
return '''
/api/check to check Canadian Driving Licence
/api/ocr for Candian Driving Licence OCR
'''
@app.route('/api/check')
@cross_origin
def licCheck():
pytesseract.pytesseract.tesseract_cmd = r"C:\Users\pc\AppData\Local\Tesseract-OCR\tesseract.exe" # Location will vary
if 'file' not in request.files:
raise error_handle('Image is required!')
file = request.files['file']
image = cv2.imread(file)
cv2.waitKey(0)
median, dilation, x = preprocess(image)
temp1 = median[50:110 , 617:1027]
temp3 = dilation[50:110 , 617:1027]
st1 = pytesseract.image_to_string(temp1)
st3 = pytesseract.image_to_string(temp3)
if SequenceMatcher(None, "Driver's Licence", st3.strip()).ratio() > 0.5 or SequenceMatcher(None, "Driver's Licence", st1.strip()).ratio() > 0.5 :
return success_handle("Canadian Driving Licence received as input. You are good to go!")
else:
return error_handle("Input image may not be a Canadian Driving Licence")
@app.route("/api/ocr", methods=['POST','GET'])
@cross_origin
def ocr():
if request.method == 'POST':
try:
pytesseract.pytesseract.tesseract_cmd = r"C:\Users\pc\AppData\Local\Tesseract-OCR\tesseract.exe" # Location will vary
if 'file1' not in request.files:
raise error_handle('Image is required!')
file1 = request.files['file1']
image = cv2.imread(file1)
cv2.waitKey(0)
if 'file2' not in request.files:
raise error_handle('Bounding Box Data is required!') # BoundingBoxData.csv file to be inputted
file2 = request.files['file2']
image = cv2.imread(file1)
cv2.waitKey(0)
median, dilation, x = preprocess(image)
# Getting Bounding Box Coordinates and their respective confidence values :
# print(pytesseract.image_to_data(dilation))
return success_handle(extract(median, dilation, file2))
except Exception as e:
return error_handle(str(e))
return '''
<!DOCTYPE HTML>
<title>OCR API</title>
<h1>Upload image and Bounding Box Data CSV File</h1>
<form method=post enctype=multipart/form-data>
<input type=image name=file1>
<input type=image name=file2>
<input type=submit value=Upload>
</form>
'''
app.run(debug=True)