-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_to_csv4.py
84 lines (62 loc) · 2.86 KB
/
data_to_csv4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import urllib3
import csv
import sys
import pandas as pd
import json
import inflect
import pprint
import numpy as np
class dataToCSV:
def init(self,*args):
f=inflect.engine()
http = urllib3.PoolManager()
#r1 = http.request('GET', 'http://magento.arogyarahasya.com/productviewcount/index/index')
r1 = http.request('GET', 'https://magento.arogyarahasya.com/recommendation/index/api?type=category_product')
r2 = http.request('GET', 'https://magento.arogyarahasya.com/recommendation/index/api?type=order_item')
r3 = http.request('GET', 'https://magento.arogyarahasya.com/recommendation/index/api?type=product')
#r4 = http.request('GET', 'https://magento.arogyarahasya.com/recommendation/index/api?type=product_view')
r5 = http.request('GET', 'https://magento.arogyarahasya.com/recommendation/index/api?type=product_review')
r6 = http.request('GET', 'https://magento.arogyarahasya.com/recommendation/index/api?type=product_view')
# f.write(r1.data)
# reload(sys)
# sys.setdefaultencoding('utf8')
rows = json.loads(r1.data)
df = pd.DataFrame(rows)
rows_sold = json.loads(r2.data)
df_sold = pd.DataFrame(rows_sold)
rows_data = json.loads(r3.data)
df_data = pd.DataFrame(rows_data)
rows_trending = json.loads(r6.data)
df_trending = pd.DataFrame(rows_trending)
rows_ratings = json.loads(r5.data)
df_rating = pd.DataFrame(rows_ratings)
df.to_csv("AR_Data1.csv", index=False, encoding='utf-8')
df_data.to_csv("AR_Data_Cats.csv", index=False,encoding='utf-8')
ids_list = df['product_id'].tolist()
dfs1 = pd.DataFrame()
dfs1["id"] = ids_list
dfs1 = df_sold.groupby(['product_id']).size().reset_index(name='sold')
dfs1.to_csv("AR_Data_Sold1.csv", index=False, encoding='utf-8')
dfr1 = pd.DataFrame()
dfr1["Entity_Pk_Value"] = df_rating["entity_pk_value"] .tolist()
dfr1["Ratings"] = df_rating["rating_summary"] .tolist()
dfr1.to_csv("AR_Data_Ratings1.csv", index=False, encoding='utf-8')
dfl1 = pd.DataFrame()
dfl1["id"] = df_data['id'].tolist()
dfl1["created_at"] = df_data["created_at"] .tolist()
dfl1.to_csv("AR_Data_Latest.csv",index=False,encoding='utf-8')
dft1 = pd.DataFrame()
dft1["product_id"] = df_trending["product_id"].tolist()
s = df_trending['product_id'].value_counts().rename('views')
dft1 = dft1.join(s, on='product_id')
dft1["added_at"] = df_trending["added_at"].tolist()
dft1 = dft1.join(dfl1["created_at"])
dft1.to_csv("AR_Data_Trending.csv", index=False, encoding='utf-8')
# dfd = pd.DataFrame()
# dfd["id"] = df_data["id"].tolist()
df_data["price"]=df_data["price"].astype(float)
df_data['final_price']=df_data['final_price'].astype(float)
df_data['Discount'] = ((df_data["price"]-df_data['final_price']) / df_data["price"]) *100
df_data.to_csv("AR_Data_Cats.csv",index=False,encoding='utf-8',)
#df_views.to_csv("AR_Data_views.csv",index=False,encoding = 'utf-8')
dataToCSV().init()