-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
46 lines (44 loc) · 1.57 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from setuptools import setup, find_packages
import os
def setup_package():
data = dict(
name='BrainNormativeCVAE',
version='0.1.0',
packages=find_packages(),
install_requires=[
'statsmodels==0.13.2',
'matplotlib==3.5.3',
'numpy==1.23.2',
'torch==1.12.1',
'pandas==1.4.3',
'scikit-learn==1.3.0',
'optuna==3.4.0',
'pyyaml>=6.0.1',
'tqdm>=4.65.0',
'setuptools>=64.0.0',
'openpyxl>=3.1.5'
],
description='A library for running cVAE-based normative model',
long_description="""
BrainNormativeCVAE is a library for normative modeling using conditional VAE.
This implementation extends the normative modelling framework by
Lawry Aguila et al. (2022) (https://github.com/alawryaguila/normativecVAE),
with refinements in both the model architecture and inference approach.
""",
author='Mai Ho',
author_email='[email protected]',
url='https://github.com/maiho24/BrainNormativeCVAE',
python_requires='>=3.8',
entry_points={
'console_scripts': [
'brain-cvae-train=scripts.train_model:main',
'brain-cvae-inference=scripts.run_inference:main',
],
},
project_urls={
'Original Implementation': 'https://github.com/alawryaguila/normativecVAE',
}
)
setup(**data)
if __name__ == "__main__":
setup_package()