-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbootleg3d.c
455 lines (418 loc) · 17.6 KB
/
bootleg3d.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
BOOTLEG 3D
A super simple software renderer written in C99.
by Benedict Henshaw, 2020
This file is available under two licenses; see end of file.
*/
#include <stdint.h>
// Public API
void b3d_init(uint32_t * pixel_buffer, float * depth_buffer, int w, int h, float fov);
void b3d_clear(void);
void b3d_reset(void);
void b3d_translate(float x, float y, float z);
void b3d_rotate_x(float angle);
void b3d_rotate_y(float angle);
void b3d_rotate_z(float angle);
void b3d_scale(float x, float y, float z);
void b3d_set_camera(float x, float y, float z, float yaw, float pitch, float roll);
void b3d_look_at(float x, float y, float z);
int b3d_to_screen(float x, float y, float z, int * sx, int * sy);
void b3d_set_fov(float fov_in_degrees);
void b3d_triangle(float ax, float ay, float az, float bx, float by, float bz, float cx, float cy, float cz, uint32_t c);
// You can also access these, but best to only read from them.
extern int b3d_width, b3d_height;
extern uint32_t * b3d_pixels;
extern float * b3d_depth;
#ifdef BOOTLEG3D_IMPLEMENTATION
#include <math.h>
#include <string.h>
int b3d_width, b3d_height;
uint32_t * b3d_pixels;
float * b3d_depth;
typedef struct { float x, y, z, w; } b3d_vec_t;
typedef struct { float m[4][4]; } b3d_mat_t;
typedef struct { b3d_vec_t p[3]; } b3d_triangle_t;
b3d_mat_t b3d_model, b3d_view, b3d_proj;
b3d_vec_t b3d_camera;
#define B3D_NEAR_DISTANCE 0.1f
#define B3D_FAR_DISTANCE 100.0f
float b3d_vec_dot(b3d_vec_t a, b3d_vec_t b) { return a.x*b.x + a.y*b.y + a.z*b.z; }
float b3d_vec_length(b3d_vec_t v) { return sqrtf(b3d_vec_dot(v, v)); }
b3d_vec_t b3d_vec_add(b3d_vec_t a, b3d_vec_t b) { return (b3d_vec_t){ a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w }; }
b3d_vec_t b3d_vec_cross(b3d_vec_t a, b3d_vec_t b) { return (b3d_vec_t){ a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x, 1 }; }
b3d_vec_t b3d_vec_div(b3d_vec_t a, float b) { return (b3d_vec_t){ a.x / b, a.y / b, a.z / b, 1 }; }
b3d_vec_t b3d_vec_mul(b3d_vec_t a, float b) { return (b3d_vec_t){ a.x * b, a.y * b, a.z * b, a.w * b }; }
b3d_vec_t b3d_vec_norm(b3d_vec_t v) { float l = b3d_vec_length(v); return (b3d_vec_t){ v.x / l, v.y / l, v.z / l, 1 }; }
b3d_vec_t b3d_vec_sub(b3d_vec_t a, b3d_vec_t b) { return (b3d_vec_t){ a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w }; }
b3d_mat_t b3d_mat_ident() {
return (b3d_mat_t){{
[0][0] = 1,
[1][1] = 1,
[2][2] = 1,
[3][3] = 1,
}};
}
b3d_mat_t b3d_mat_rot_x(float a) {
return (b3d_mat_t){{
[0][0] = 1,
[1][1] = cosf(a),
[1][2] = sinf(a),
[2][1] = -sinf(a),
[2][2] = cosf(a),
[3][3] = 1,
}};
}
b3d_mat_t b3d_mat_rot_y(float a) {
return (b3d_mat_t){{
[0][0] = cosf(a),
[0][2] = sinf(a),
[2][0] = -sinf(a),
[1][1] = 1,
[2][2] = cosf(a),
[3][3] = 1,
}};
}
b3d_mat_t b3d_mat_rot_z(float a) {
return (b3d_mat_t){{
[0][0] = cosf(a),
[0][1] = sinf(a),
[1][0] = -sinf(a),
[1][1] = cosf(a),
[2][2] = 1,
[3][3] = 1,
}};
}
b3d_mat_t b3d_mat_trans(float x, float y, float z) {
return (b3d_mat_t){{
[0][0] = 1,
[1][1] = 1,
[2][2] = 1,
[3][3] = 1,
[3][0] = x,
[3][1] = y,
[3][2] = z,
}};
}
b3d_mat_t b3d_mat_scale(float x, float y, float z) {
return (b3d_mat_t){{
[0][0] = x,
[1][1] = y,
[2][2] = z,
[3][3] = 1,
}};
}
b3d_mat_t b3d_mat_proj(float fov, float aspect, float near, float far) {
fov = 1.0f / tanf(fov * 0.5f / 180.0f * 3.1415926536f);
return (b3d_mat_t){{
[0][0] = aspect * fov,
[1][1] = fov,
[2][2] = far / (far - near),
[3][2] = (-far * near) / (far - near),
[2][3] = 1,
[3][3] = 0,
}};
}
b3d_mat_t b3d_mat_mul(b3d_mat_t a, b3d_mat_t b) {
b3d_mat_t matrix;
for (int c = 0; c < 4; c++) {
for (int r = 0; r < 4; r++) {
matrix.m[r][c] =
a.m[r][0] * b.m[0][c] +
a.m[r][1] * b.m[1][c] +
a.m[r][2] * b.m[2][c] +
a.m[r][3] * b.m[3][c];
}
}
return matrix;
}
b3d_vec_t b3d_mat_mul_vec(b3d_mat_t m, b3d_vec_t v) {
return (b3d_vec_t){
v.x * m.m[0][0] + v.y * m.m[1][0] + v.z * m.m[2][0] + v.w * m.m[3][0],
v.x * m.m[0][1] + v.y * m.m[1][1] + v.z * m.m[2][1] + v.w * m.m[3][1],
v.x * m.m[0][2] + v.y * m.m[1][2] + v.z * m.m[2][2] + v.w * m.m[3][2],
v.x * m.m[0][3] + v.y * m.m[1][3] + v.z * m.m[2][3] + v.w * m.m[3][3],
};
}
b3d_mat_t b3d_mat_qinv(b3d_mat_t m) {
b3d_mat_t o = (b3d_mat_t){{
[0][0] = m.m[0][0], [0][1] = m.m[1][0], [0][2] = m.m[2][0], [0][3] = 0,
[1][0] = m.m[0][1], [1][1] = m.m[1][1], [1][2] = m.m[2][1], [1][3] = 0,
[2][0] = m.m[0][2], [2][1] = m.m[1][2], [2][2] = m.m[2][2], [2][3] = 0,
}};
o.m[3][0] = -(m.m[3][0] * o.m[0][0] + m.m[3][1] * o.m[1][0] + m.m[3][2] * o.m[2][0]);
o.m[3][1] = -(m.m[3][0] * o.m[0][1] + m.m[3][1] * o.m[1][1] + m.m[3][2] * o.m[2][1]);
o.m[3][2] = -(m.m[3][0] * o.m[0][2] + m.m[3][1] * o.m[1][2] + m.m[3][2] * o.m[2][2]);
o.m[3][3] = 1;
return o;
}
b3d_mat_t b3d_mat_point_at(b3d_vec_t pos, b3d_vec_t target, b3d_vec_t up) {
b3d_vec_t forward = b3d_vec_sub(target, pos);
forward = b3d_vec_norm(forward);
b3d_vec_t a = b3d_vec_mul(forward, b3d_vec_dot(up, forward));
up = b3d_vec_norm(b3d_vec_sub(up, a));
b3d_vec_t right = b3d_vec_cross(up, forward);
return (b3d_mat_t){{
[0][0] = right.x, [0][1] = right.y, [0][2] = right.z, [0][3] = 0,
[1][0] = up.x, [1][1] = up.y, [1][2] = up.z, [1][3] = 0,
[2][0] = forward.x, [2][1] = forward.y, [2][2] = forward.z, [2][3] = 0,
[3][0] = pos.x, [3][1] = pos.y, [3][2] = pos.z, [3][3] = 1,
}};
}
b3d_vec_t b3d_intersect_plane(b3d_vec_t plane, b3d_vec_t norm, b3d_vec_t start, b3d_vec_t end) {
norm = b3d_vec_norm(norm);
float delta = -b3d_vec_dot(norm, plane);
float ad = b3d_vec_dot(start, norm);
float bd = b3d_vec_dot(end, norm);
float t = (-delta - ad) / (bd - ad);
b3d_vec_t start_to_end = b3d_vec_sub(end, start);
b3d_vec_t segment = b3d_vec_mul(start_to_end, t);
return b3d_vec_add(start, segment);
}
int b3d_clip_against_plane(b3d_vec_t plane, b3d_vec_t norm, b3d_triangle_t in, b3d_triangle_t out[2]) {
norm = b3d_vec_norm(norm);
b3d_vec_t * inside[3];
int inside_count = 0;
b3d_vec_t * outside[3];
int outside_count = 0;
float d0 = (norm.x * in.p[0].x + norm.y * in.p[0].y + norm.z * in.p[0].z - b3d_vec_dot(norm, plane));
float d1 = (norm.x * in.p[1].x + norm.y * in.p[1].y + norm.z * in.p[1].z - b3d_vec_dot(norm, plane));
float d2 = (norm.x * in.p[2].x + norm.y * in.p[2].y + norm.z * in.p[2].z - b3d_vec_dot(norm, plane));
if (d0 >= 0) inside[inside_count++] = &in.p[0]; else outside[outside_count++] = &in.p[0];
if (d1 >= 0) inside[inside_count++] = &in.p[1]; else outside[outside_count++] = &in.p[1];
if (d2 >= 0) inside[inside_count++] = &in.p[2]; else outside[outside_count++] = &in.p[2];
if (inside_count == 3) {
out[0] = in;
return 1;
} else if (inside_count == 1 && outside_count == 2) {
out[0].p[0] = *inside[0];
out[0].p[1] = b3d_intersect_plane(plane, norm, *inside[0], *outside[0]);
out[0].p[2] = b3d_intersect_plane(plane, norm, *inside[0], *outside[1]);
return 1;
} else if (inside_count == 2 && outside_count == 1) {
out[0].p[0] = *inside[0];
out[0].p[1] = *inside[1];
out[0].p[2] = b3d_intersect_plane(plane, norm, *inside[0], *outside[0]);
out[1].p[0] = *inside[1];
out[1].p[1] = out[0].p[2];
out[1].p[2] = b3d_intersect_plane(plane, norm, *inside[1], *outside[0]);
return 2;
}
return 0;
}
void b3d_rasterise(float ax, float ay, float az, float bx, float by, float bz, float cx, float cy, float cz, uint32_t c) {
ax = floorf(ax); bx = floorf(bx); cx = floorf(cx);
ay = floorf(ay); by = floorf(by); cy = floorf(cy);
float t = 0;
if (ay > by) { t = ax; ax = bx; bx = t; t = ay; ay = by; by = t; t = az; az = bz; bz = t; }
if (ay > cy) { t = ax; ax = cx; cx = t; t = ay; ay = cy; cy = t; t = az; az = cz; cz = t; }
if (by > cy) { t = bx; bx = cx; cx = t; t = by; by = cy; cy = t; t = bz; bz = cz; cz = t; }
float alpha = 0, alpha_step = 1 / (cy - ay);
float beta = 0, beta_step = 1 / (by - ay);
for (int y = (int)ay; y < by; y++) {
float sx = ax + (cx - ax) * alpha;
float sz = az + (cz - az) * alpha;
float ex = ax + (bx - ax) * beta;
float ez = az + (bz - az) * beta;
if (sx > ex) { t = sx; sx = ex; ex = t; t = sz; sz = ez; ez = t; }
float depth_step = (ez - sz) / (ex - sx);
float d = sz;
int end = (int)ex;
for (int x = (int)sx; x < end; ++x) {
int p = x + y * b3d_width;
if (d < b3d_depth[p]) { b3d_depth[p] = d; b3d_pixels[p] = c; }
d += depth_step;
}
alpha += alpha_step;
beta += beta_step;
}
beta = 0;
beta_step = 1 / (cy - by);
for (int y = (int)by; y < cy; y++) {
float sx = ax + (cx - ax) * alpha;
float sz = az + (cz - az) * alpha;
float ex = bx + (cx - bx) * beta;
float ez = bz + (cz - bz) * beta;
if (sx > ex) { t = sx; sx = ex; ex = t; t = sz; sz = ez; ez = t; }
float depth_step = (ez - sz) / (ex - sx);
float d = sz;
int end = (int)ex;
for (int x = (int)sx; x < end; ++x) {
int p = x + y * b3d_width;
if (d < b3d_depth[p]) { b3d_depth[p] = d; b3d_pixels[p] = c; }
d += depth_step;
}
alpha += alpha_step;
beta += beta_step;
}
}
/*
Public API
*/
void b3d_triangle(float ax, float ay, float az, float bx, float by, float bz, float cx, float cy, float cz, uint32_t c) {
b3d_triangle_t t = (b3d_triangle_t){{{ax,ay,az,1},{bx,by,bz,1},{cx,cy,cz,1}}};
t.p[0] = b3d_mat_mul_vec(b3d_model, t.p[0]);
t.p[1] = b3d_mat_mul_vec(b3d_model, t.p[1]);
t.p[2] = b3d_mat_mul_vec(b3d_model, t.p[2]);
#ifndef BOOTLEG3D_NO_CULLING
b3d_vec_t line_a = b3d_vec_sub(t.p[1], t.p[0]);
b3d_vec_t line_b = b3d_vec_sub(t.p[2], t.p[0]);
b3d_vec_t normal = b3d_vec_cross(line_a, line_b);
b3d_vec_t cam_ray = b3d_vec_sub(t.p[0], b3d_camera);
if (b3d_vec_dot(normal, cam_ray) > 0.01f) return;
#endif
t.p[0] = b3d_mat_mul_vec(b3d_view, t.p[0]);
t.p[1] = b3d_mat_mul_vec(b3d_view, t.p[1]);
t.p[2] = b3d_mat_mul_vec(b3d_view, t.p[2]);
b3d_triangle_t clipped[2];
int count = b3d_clip_against_plane(
(b3d_vec_t){ 0, 0, B3D_NEAR_DISTANCE, 1 },
(b3d_vec_t){ 0, 0, 1, 1 },
t,
clipped
);
b3d_triangle_t queue[16];
int queue_count = 0;
for (int n = 0; n < count; ++n) {
t.p[0] = b3d_mat_mul_vec(b3d_proj, clipped[n].p[0]);
t.p[1] = b3d_mat_mul_vec(b3d_proj, clipped[n].p[1]);
t.p[2] = b3d_mat_mul_vec(b3d_proj, clipped[n].p[2]);
t.p[0] = b3d_vec_div(t.p[0], t.p[0].w);
t.p[1] = b3d_vec_div(t.p[1], t.p[1].w);
t.p[2] = b3d_vec_div(t.p[2], t.p[2].w);
float xs = b3d_width / 2;
float ys = b3d_height / 2;
t.p[0].x = ( t.p[0].x + 1) * xs;
t.p[0].y = (-t.p[0].y + 1) * ys;
t.p[1].x = ( t.p[1].x + 1) * xs;
t.p[1].y = (-t.p[1].y + 1) * ys;
t.p[2].x = ( t.p[2].x + 1) * xs;
t.p[2].y = (-t.p[2].y + 1) * ys;
queue[queue_count++] = t;
}
b3d_vec_t tp = { 0, 0.5f, 0, 1 };
b3d_vec_t tn = { 0, 1, 0, 1 };
b3d_vec_t bp = { 0, b3d_height, 0, 1 };
b3d_vec_t bn = { 0, -1, 0, 1 };
b3d_vec_t lp = { 0.5f, 0, 0, 1 };
b3d_vec_t ln = { 1, 0, 0, 1 };
b3d_vec_t rp = { b3d_width, 0, 0, 1 };
b3d_vec_t rn = { -1, 0, 0, 1 };
int triangles_to_clip = queue_count;
for (int p = 0; p < 4; ++p) {
int n = 0;
while (triangles_to_clip > 0) {
b3d_triangle_t test = queue[0];
--queue_count;
--triangles_to_clip;
memmove(queue, queue + 1, (int)sizeof(b3d_triangle_t) * queue_count);
switch (p) {
case 0: n = b3d_clip_against_plane(tp, tn, test, clipped); break;
case 1: n = b3d_clip_against_plane(bp, bn, test, clipped); break;
case 2: n = b3d_clip_against_plane(lp, ln, test, clipped); break;
case 3: n = b3d_clip_against_plane(rp, rn, test, clipped); break;
}
for (int w = 0; w < n; ++w) {
queue[queue_count++] = clipped[w];
}
}
triangles_to_clip = queue_count;
}
for (int i = 0; i < queue_count; ++i) {
b3d_triangle_t * triangle = &queue[i];
b3d_rasterise(
triangle->p[0].x, triangle->p[0].y, triangle->p[0].z,
triangle->p[1].x, triangle->p[1].y, triangle->p[1].z,
triangle->p[2].x, triangle->p[2].y, triangle->p[2].z,
c
);
}
}
void b3d_reset() { b3d_model = b3d_mat_ident(); }
void b3d_rotate_x(float angle) { b3d_model = b3d_mat_mul(b3d_model, b3d_mat_rot_x(angle)); }
void b3d_rotate_y(float angle) { b3d_model = b3d_mat_mul(b3d_model, b3d_mat_rot_y(angle)); }
void b3d_rotate_z(float angle) { b3d_model = b3d_mat_mul(b3d_model, b3d_mat_rot_z(angle)); }
void b3d_translate(float x, float y, float z) { b3d_model = b3d_mat_mul(b3d_model, b3d_mat_trans(x, y, z)); }
void b3d_scale(float x, float y, float z) { b3d_model = b3d_mat_mul(b3d_model, b3d_mat_scale(x, y, z)); }
void b3d_set_fov(float fov_in_degrees) { b3d_proj = b3d_mat_proj(fov_in_degrees, b3d_height/(float)b3d_width, B3D_NEAR_DISTANCE, B3D_FAR_DISTANCE); }
void b3d_set_camera(float x, float y, float z, float yaw, float pitch, float roll) {
b3d_camera = (b3d_vec_t){ x, y, z, 1 };
b3d_vec_t up = { 0, 1, 0, 1 };
b3d_vec_t target = { 0, 0, 1, 1 };
up = b3d_mat_mul_vec(b3d_mat_rot_z(roll), up);
target = b3d_mat_mul_vec(b3d_mat_rot_x(pitch), target);
target = b3d_mat_mul_vec(b3d_mat_rot_y(yaw), target);
target = b3d_vec_add(b3d_camera, target);
b3d_view = b3d_mat_qinv(b3d_mat_point_at(b3d_camera, target, up));
}
void b3d_look_at(float x, float y, float z) {
b3d_vec_t up = { 0, 1, 0, 1 };
b3d_view = b3d_mat_qinv(b3d_mat_point_at(b3d_camera, (b3d_vec_t){ x, y, z, 1 }, up));
}
int b3d_to_screen(float x, float y, float z, int * sx, int * sy) {
b3d_vec_t p = { x, y, z, 1 };
p = b3d_mat_mul_vec(b3d_view, p);
p = b3d_mat_mul_vec(b3d_proj, p);
p = b3d_vec_div(p, p.w);
if (p.w < 0) return 0; // behind camera
p = b3d_vec_div(p, p.w);
float mid_x = b3d_width / 2.0f;
float mid_y = b3d_height / 2.0f;
p.x = ( p.x + 1.0f) * mid_x;
p.y = (-p.y + 1.0f) * mid_y;
// could be off screen, but the value is still usable (clamp or clip as needed)
*sx = (int)(p.x + 0.5f);
*sy = (int)(p.y + 0.5f);
return 1;
}
void b3d_init(uint32_t * pixel_buffer, float * depth_buffer, int w, int h, float fov) {
b3d_width = w;
b3d_height = h;
b3d_pixels = pixel_buffer;
b3d_depth = depth_buffer;
b3d_clear();
b3d_reset();
b3d_proj = b3d_mat_proj(fov, b3d_height/(float)b3d_width, B3D_NEAR_DISTANCE, B3D_FAR_DISTANCE);
b3d_set_camera(0, 0, 0, 0, 0, 0);
}
void b3d_clear() {
memset(b3d_depth, 0x7f, b3d_width * b3d_height * (int)sizeof(b3d_depth[0]));
memset(b3d_pixels, 0, b3d_width * b3d_height * (int)sizeof(b3d_pixels[0]));
}
#endif
/*
This software is available under 2 licenses, choose whichever you prefer:
ALTERNATIVE A - MIT License
Copyright (c) 2022 Benedict Henshaw
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/