forked from hunkim/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05_linear_regression.py
54 lines (42 loc) · 1.55 KB
/
05_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from torch import nn
import torch
from torch import tensor
x_data = tensor([[1.0], [2.0], [3.0]])
y_data = tensor([[2.0], [4.0], [6.0]])
class Model(nn.Module):
def __init__(self):
"""
In the constructor we instantiate two nn.Linear module
"""
super(Model, self).__init__()
self.linear = torch.nn.Linear(1, 1) # One in and one out
def forward(self, x):
"""
In the forward function we accept a Variable of input data and we must return
a Variable of output data. We can use Modules defined in the constructor as
well as arbitrary operators on Variables.
"""
y_pred = self.linear(x)
return y_pred
# our model
model = Model()
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
# nn.Linear modules which are members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Training loop
for epoch in range(500):
# 1) Forward pass: Compute predicted y by passing x to the model
y_pred = model(x_data)
# 2) Compute and print loss
loss = criterion(y_pred, y_data)
print(f'Epoch: {epoch} | Loss: {loss.item()} ')
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
# After training
hour_var = tensor([[4.0]])
y_pred = model(hour_var)
print("Prediction (after training)", 4, model(hour_var).data[0][0].item())