diff --git a/mao_merge_45m/__init__.py b/mao_merge_45m/__init__.py index 0325b9a..4e91346 100644 --- a/mao_merge_45m/__init__.py +++ b/mao_merge_45m/__init__.py @@ -10,6 +10,7 @@ from . import antenna_50_sps from . import correlator from . import merge +from . import power_meter from . import sam45 from . import thermometer from . import weather diff --git a/mao_merge_45m/merge.py b/mao_merge_45m/merge.py index 940eae9..5cb4f22 100644 --- a/mao_merge_45m/merge.py +++ b/mao_merge_45m/merge.py @@ -25,6 +25,7 @@ def merge( path_antenna_zarr: Optional[Path] = None, path_sam45_zarr: Optional[Path] = None, path_thermometer_zarr: Optional[Path] = None, + path_power_meter_zarr: Optional[Path] = None, interpolation: str = "linear", time_offset: int = 0, overwrite: bool = False, @@ -40,6 +41,7 @@ def merge( path_antenna_zarr: Path of the antenna Zarr file. path_sam45_zarr: Path of the SAM45 Zarr file. path_thermometer_zarr: Path of the thermometer Zarr file. + path_power_meter_zarr: Path of the power meter zarr file. interpolation: Method of interpolation of log data. time_offset: Offset time in units of ms to add to correlator data overwrite: Whether to overwrite the merged Zarr file if exists. @@ -79,6 +81,7 @@ def merge( path_antenna_zarr, path_sam45_zarr, path_thermometer_zarr, + path_power_meter_zarr, ): if path is None: continue diff --git a/mao_merge_45m/power_meter.py b/mao_merge_45m/power_meter.py new file mode 100644 index 0000000..d7ddb1e --- /dev/null +++ b/mao_merge_45m/power_meter.py @@ -0,0 +1,130 @@ +# standard library +from dataclasses import dataclass +import datetime +from pathlib import Path +import re +from typing import Literal, Optional, Sequence, Union + + +# third-party packages +import numpy as np +import pandas as pd +from dask.diagnostics import ProgressBar +from xarray_dataclasses import AsDataset, Attr, Data, Dataof + + +# constants +LOG_COLS = "time", "power_meter" +JST_HOURS = np.timedelta64(9, "h") + + +# type hints +T = Literal["time"] + + +@dataclass +class TotalPower: + data: Data[T, float] = 0.0 + long_name: Attr[str] = "Total power" + units: Attr[str] = "dBm" + + +@dataclass +class PowerMeter(AsDataset): + """Representation of power meter logs in xarray.""" + + power_meter: Dataof[TotalPower] = 0.0 + """The output of the power meter.""" + + +def convert( + path_log: Union[Sequence[Path], Path], + path_zarr: Optional[Path] = None, + *, + length_per_chunk: int = 1000000, + overwrite: bool = False, + progress: bool = False, +) -> Path: + """Convert a raw log file(s) to a formatted Zarr file. + + This function will make a one-dimensional antenna log outputs + with time metadata derived from the raw log file. + + Args: + path_log: Path(s) of the raw log file(s). + path_zarr: Path of the formatted Zarr file (optional). + length_per_chunk: Length per chunk in the Zarr file. + overwrite: Whether to overwrite the formatted Zarr file if exists. + progress: Whether to show a progress bar. + + Returns: + Path of the formatted Zarr file. + + Raises: + FileExistsError: Raised if the formatted Zarr file exists + and overwriting is not allowed (default). + + Notes: + The timezone of the Zarr file is not JST but UTC. + + """ + # check the existence of the Zarr file + if isinstance(path_log, Path): + path_log = [path_log] + + if path_zarr is None: + path_zarr = path_log[0].with_suffix(".zarr") + + if path_zarr.exists() and not overwrite: + raise FileExistsError(f"{path_zarr} already exists.") + + # read log file(s) and convert them to DataFrame(s) + df = pd.DataFrame( + columns=LOG_COLS[1:], + index=pd.DatetimeIndex([], name=LOG_COLS[0]), + ) + + for path in path_log: + df_ = pd.read_csv( + path, + header=None, + skiprows=7, + usecols=[0, 1], + names=["time", "total_power"], + index_col=0, + ) + + # file_pathから何月日の情報を抽出 --> formatを指定してstr型に変換 + time_id = re.search(r"\d{13}", str(path)).group() + dt_utc = datetime.datetime.strptime(time_id, "%Y%j%H%M%S") + dt_jst = dt_utc + datetime.timedelta(hours=9) + date_ymd_str = dt_jst.strftime("%Y-%m-%dT") + + # 2つのstrを足してindexへ + df_.index = pd.to_datetime(date_ymd_str + df_.index) + + # ミリ秒のタイムスタンプを追加 + df_["num"] = df_.groupby('time').cumcount() + 1 + df_["num_max"] = df_.groupby('time').max()["num"] + + df_.reset_index(inplace=True) + df_["s"] = (df_["num"]-1)/df_["num_max"]*1000 + df_["time"] = df_["time"] + pd.to_timedelta(np.array(df_["s"]), unit="ms") + df_.set_index(df_["time"], inplace=True) + + # 不要な列を削除 + df_ = df_.drop(columns=["time", "num", "num_max", "s"]) + df = pd.concat([df, df_]) + + # write DataFrame(s) to the Zarr file + ds = PowerMeter.new(df.total_power) + ds = ds.assign_coords(time=ds.time - JST_HOURS) + ds = ds.chunk(length_per_chunk) + + if progress: + with ProgressBar(): + ds.to_zarr(path_zarr, mode="w") + else: + ds.to_zarr(path_zarr, mode="w") + + return path_zarr