-
Notifications
You must be signed in to change notification settings - Fork 300
/
Copy pathindex.js
425 lines (349 loc) · 14.8 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import KDBush from 'kdbush';
const defaultOptions = {
minZoom: 0, // min zoom to generate clusters on
maxZoom: 16, // max zoom level to cluster the points on
minPoints: 2, // minimum points to form a cluster
radius: 40, // cluster radius in pixels
extent: 512, // tile extent (radius is calculated relative to it)
nodeSize: 64, // size of the KD-tree leaf node, affects performance
log: false, // whether to log timing info
// whether to generate numeric ids for input features (in vector tiles)
generateId: false,
// a reduce function for calculating custom cluster properties
reduce: null, // (accumulated, props) => { accumulated.sum += props.sum; }
// properties to use for individual points when running the reducer
map: props => props // props => ({sum: props.my_value})
};
const fround = Math.fround || (tmp => ((x) => { tmp[0] = +x; return tmp[0]; }))(new Float32Array(1));
const OFFSET_ZOOM = 2;
const OFFSET_ID = 3;
const OFFSET_PARENT = 4;
const OFFSET_NUM = 5;
const OFFSET_PROP = 6;
export default class Supercluster {
constructor(options) {
this.options = Object.assign(Object.create(defaultOptions), options);
this.trees = new Array(this.options.maxZoom + 1);
this.stride = this.options.reduce ? 7 : 6;
this.clusterProps = [];
}
load(points) {
const {log, minZoom, maxZoom} = this.options;
if (log) console.time('total time');
const timerId = `prepare ${ points.length } points`;
if (log) console.time(timerId);
this.points = points;
// generate a cluster object for each point and index input points into a KD-tree
const data = [];
for (let i = 0; i < points.length; i++) {
const p = points[i];
if (!p.geometry) continue;
const [lng, lat] = p.geometry.coordinates;
const x = fround(lngX(lng));
const y = fround(latY(lat));
// store internal point/cluster data in flat numeric arrays for performance
data.push(
x, y, // projected point coordinates
Infinity, // the last zoom the point was processed at
i, // index of the source feature in the original input array
-1, // parent cluster id
1 // number of points in a cluster
);
if (this.options.reduce) data.push(0); // noop
}
let tree = this.trees[maxZoom + 1] = this._createTree(data);
if (log) console.timeEnd(timerId);
// cluster points on max zoom, then cluster the results on previous zoom, etc.;
// results in a cluster hierarchy across zoom levels
for (let z = maxZoom; z >= minZoom; z--) {
const now = +Date.now();
// create a new set of clusters for the zoom and index them with a KD-tree
tree = this.trees[z] = this._createTree(this._cluster(tree, z));
if (log) console.log('z%d: %d clusters in %dms', z, tree.numItems, +Date.now() - now);
}
if (log) console.timeEnd('total time');
return this;
}
getClusters(bbox, zoom) {
let minLng = ((bbox[0] + 180) % 360 + 360) % 360 - 180;
const minLat = Math.max(-90, Math.min(90, bbox[1]));
let maxLng = bbox[2] === 180 ? 180 : ((bbox[2] + 180) % 360 + 360) % 360 - 180;
const maxLat = Math.max(-90, Math.min(90, bbox[3]));
if (bbox[2] - bbox[0] >= 360) {
minLng = -180;
maxLng = 180;
} else if (minLng > maxLng) {
const easternHem = this.getClusters([minLng, minLat, 180, maxLat], zoom);
const westernHem = this.getClusters([-180, minLat, maxLng, maxLat], zoom);
return easternHem.concat(westernHem);
}
const tree = this.trees[this._limitZoom(zoom)];
const ids = tree.range(lngX(minLng), latY(maxLat), lngX(maxLng), latY(minLat));
const data = tree.data;
const clusters = [];
for (const id of ids) {
const k = this.stride * id;
clusters.push(data[k + OFFSET_NUM] > 1 ? getClusterJSON(data, k, this.clusterProps) : this.points[data[k + OFFSET_ID]]);
}
return clusters;
}
getChildren(clusterId) {
const originId = this._getOriginId(clusterId);
const originZoom = this._getOriginZoom(clusterId);
const errorMsg = 'No cluster with the specified id.';
const tree = this.trees[originZoom];
if (!tree) throw new Error(errorMsg);
const data = tree.data;
if (originId * this.stride >= data.length) throw new Error(errorMsg);
const r = this.options.radius / (this.options.extent * Math.pow(2, originZoom - 1));
const x = data[originId * this.stride];
const y = data[originId * this.stride + 1];
const ids = tree.within(x, y, r);
const children = [];
for (const id of ids) {
const k = id * this.stride;
if (data[k + OFFSET_PARENT] === clusterId) {
children.push(data[k + OFFSET_NUM] > 1 ? getClusterJSON(data, k, this.clusterProps) : this.points[data[k + OFFSET_ID]]);
}
}
if (children.length === 0) throw new Error(errorMsg);
return children;
}
getLeaves(clusterId, limit, offset) {
limit = limit || 10;
offset = offset || 0;
const leaves = [];
this._appendLeaves(leaves, clusterId, limit, offset, 0);
return leaves;
}
getTile(z, x, y) {
const tree = this.trees[this._limitZoom(z)];
const z2 = Math.pow(2, z);
const {extent, radius} = this.options;
const p = radius / extent;
const top = (y - p) / z2;
const bottom = (y + 1 + p) / z2;
const tile = {
features: []
};
this._addTileFeatures(
tree.range((x - p) / z2, top, (x + 1 + p) / z2, bottom),
tree.data, x, y, z2, tile);
if (x === 0) {
this._addTileFeatures(
tree.range(1 - p / z2, top, 1, bottom),
tree.data, z2, y, z2, tile);
}
if (x === z2 - 1) {
this._addTileFeatures(
tree.range(0, top, p / z2, bottom),
tree.data, -1, y, z2, tile);
}
return tile.features.length ? tile : null;
}
getClusterExpansionZoom(clusterId) {
let expansionZoom = this._getOriginZoom(clusterId) - 1;
while (expansionZoom <= this.options.maxZoom) {
const children = this.getChildren(clusterId);
expansionZoom++;
if (children.length !== 1) break;
clusterId = children[0].properties.cluster_id;
}
return expansionZoom;
}
_appendLeaves(result, clusterId, limit, offset, skipped) {
const children = this.getChildren(clusterId);
for (const child of children) {
const props = child.properties;
if (props && props.cluster) {
if (skipped + props.point_count <= offset) {
// skip the whole cluster
skipped += props.point_count;
} else {
// enter the cluster
skipped = this._appendLeaves(result, props.cluster_id, limit, offset, skipped);
// exit the cluster
}
} else if (skipped < offset) {
// skip a single point
skipped++;
} else {
// add a single point
result.push(child);
}
if (result.length === limit) break;
}
return skipped;
}
_createTree(data) {
const tree = new KDBush(data.length / this.stride | 0, this.options.nodeSize, Float32Array);
for (let i = 0; i < data.length; i += this.stride) tree.add(data[i], data[i + 1]);
tree.finish();
tree.data = data;
return tree;
}
_addTileFeatures(ids, data, x, y, z2, tile) {
for (const i of ids) {
const k = i * this.stride;
const isCluster = data[k + OFFSET_NUM] > 1;
let tags, px, py;
if (isCluster) {
tags = getClusterProperties(data, k, this.clusterProps);
px = data[k];
py = data[k + 1];
} else {
const p = this.points[data[k + OFFSET_ID]];
tags = p.properties;
const [lng, lat] = p.geometry.coordinates;
px = lngX(lng);
py = latY(lat);
}
const f = {
type: 1,
geometry: [[
Math.round(this.options.extent * (px * z2 - x)),
Math.round(this.options.extent * (py * z2 - y))
]],
tags
};
// assign id
let id;
if (isCluster || this.options.generateId) {
// optionally generate id for points
id = data[k + OFFSET_ID];
} else {
// keep id if already assigned
id = this.points[data[k + OFFSET_ID]].id;
}
if (id !== undefined) f.id = id;
tile.features.push(f);
}
}
_limitZoom(z) {
return Math.max(this.options.minZoom, Math.min(Math.floor(+z), this.options.maxZoom + 1));
}
_cluster(tree, zoom) {
const {radius, extent, reduce, minPoints} = this.options;
const r = radius / (extent * Math.pow(2, zoom));
const data = tree.data;
const nextData = [];
const stride = this.stride;
// loop through each point
for (let i = 0; i < data.length; i += stride) {
// if we've already visited the point at this zoom level, skip it
if (data[i + OFFSET_ZOOM] <= zoom) continue;
data[i + OFFSET_ZOOM] = zoom;
// find all nearby points
const x = data[i];
const y = data[i + 1];
const neighborIds = tree.within(data[i], data[i + 1], r);
const numPointsOrigin = data[i + OFFSET_NUM];
let numPoints = numPointsOrigin;
// count the number of points in a potential cluster
for (const neighborId of neighborIds) {
const k = neighborId * stride;
// filter out neighbors that are already processed
if (data[k + OFFSET_ZOOM] > zoom) numPoints += data[k + OFFSET_NUM];
}
// if there were neighbors to merge, and there are enough points to form a cluster
if (numPoints > numPointsOrigin && numPoints >= minPoints) {
let wx = x * numPointsOrigin;
let wy = y * numPointsOrigin;
let clusterProperties;
let clusterPropIndex = -1;
// encode both zoom and point index on which the cluster originated -- offset by total length of features
const id = ((i / stride | 0) << 5) + (zoom + 1) + this.points.length;
for (const neighborId of neighborIds) {
const k = neighborId * stride;
if (data[k + OFFSET_ZOOM] <= zoom) continue;
data[k + OFFSET_ZOOM] = zoom; // save the zoom (so it doesn't get processed twice)
const numPoints2 = data[k + OFFSET_NUM];
wx += data[k] * numPoints2; // accumulate coordinates for calculating weighted center
wy += data[k + 1] * numPoints2;
data[k + OFFSET_PARENT] = id;
if (reduce) {
if (!clusterProperties) {
clusterProperties = this._map(data, i, true);
clusterPropIndex = this.clusterProps.length;
this.clusterProps.push(clusterProperties);
}
reduce(clusterProperties, this._map(data, k));
}
}
data[i + OFFSET_PARENT] = id;
nextData.push(wx / numPoints, wy / numPoints, Infinity, id, -1, numPoints);
if (reduce) nextData.push(clusterPropIndex);
} else { // left points as unclustered
for (let j = 0; j < stride; j++) nextData.push(data[i + j]);
if (numPoints > 1) {
for (const neighborId of neighborIds) {
const k = neighborId * stride;
if (data[k + OFFSET_ZOOM] <= zoom) continue;
data[k + OFFSET_ZOOM] = zoom;
for (let j = 0; j < stride; j++) nextData.push(data[k + j]);
}
}
}
}
return nextData;
}
// get index of the point from which the cluster originated
_getOriginId(clusterId) {
return (clusterId - this.points.length) >> 5;
}
// get zoom of the point from which the cluster originated
_getOriginZoom(clusterId) {
return (clusterId - this.points.length) % 32;
}
_map(data, i, clone) {
if (data[i + OFFSET_NUM] > 1) {
const props = this.clusterProps[data[i + OFFSET_PROP]];
return clone ? Object.assign({}, props) : props;
}
const original = this.points[data[i + OFFSET_ID]].properties;
const result = this.options.map(original);
return clone && result === original ? Object.assign({}, result) : result;
}
}
function getClusterJSON(data, i, clusterProps) {
return {
type: 'Feature',
id: data[i + OFFSET_ID],
properties: getClusterProperties(data, i, clusterProps),
geometry: {
type: 'Point',
coordinates: [xLng(data[i]), yLat(data[i + 1])]
}
};
}
function getClusterProperties(data, i, clusterProps) {
const count = data[i + OFFSET_NUM];
const abbrev =
count >= 10000 ? `${Math.round(count / 1000) }k` :
count >= 1000 ? `${Math.round(count / 100) / 10 }k` : count;
const propIndex = data[i + OFFSET_PROP];
const properties = propIndex === -1 ? {} : Object.assign({}, clusterProps[propIndex]);
return Object.assign(properties, {
cluster: true,
'cluster_id': data[i + OFFSET_ID],
'point_count': count,
'point_count_abbreviated': abbrev
});
}
// longitude/latitude to spherical mercator in [0..1] range
function lngX(lng) {
return lng / 360 + 0.5;
}
function latY(lat) {
const sin = Math.sin(lat * Math.PI / 180);
const y = (0.5 - 0.25 * Math.log((1 + sin) / (1 - sin)) / Math.PI);
return y < 0 ? 0 : y > 1 ? 1 : y;
}
// spherical mercator to longitude/latitude
function xLng(x) {
return (x - 0.5) * 360;
}
function yLat(y) {
const y2 = (180 - y * 360) * Math.PI / 180;
return 360 * Math.atan(Math.exp(y2)) / Math.PI - 90;
}