-
Notifications
You must be signed in to change notification settings - Fork 434
/
projection.cpp
217 lines (174 loc) · 5.33 KB
/
projection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <atomic>
#include "projection.hpp"
unsigned long long (*encode_index)(unsigned int wx, unsigned int wy) = NULL;
void (*decode_index)(unsigned long long index, unsigned *wx, unsigned *wy) = NULL;
struct projection projections[] = {
{"EPSG:4326", lonlat2tile, tile2lonlat, "urn:ogc:def:crs:OGC:1.3:CRS84"},
{"EPSG:3857", epsg3857totile, tiletoepsg3857, "urn:ogc:def:crs:EPSG::3857"},
{NULL, NULL, NULL, NULL},
};
struct projection *projection = &projections[0];
// http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
void lonlat2tile(double lon, double lat, int zoom, long long *x, long long *y) {
// Place infinite and NaN coordinates off the edge of the Mercator plane
int lat_class = fpclassify(lat);
int lon_class = fpclassify(lon);
bool bad_lon = false;
if (lat_class == FP_INFINITE || lat_class == FP_NAN) {
lat = 89.9;
}
if (lon_class == FP_INFINITE || lon_class == FP_NAN) {
// Keep these far enough from the plane that they don't get
// moved back into it by 360-degree offsetting
lon = 720;
bad_lon = true;
}
// Must limit latitude somewhere to prevent overflow.
// 89.9 degrees latitude is 0.621 worlds beyond the edge of the flat earth,
// hopefully far enough out that there are few expectations about the shape.
if (lat < -89.9) {
lat = -89.9;
}
if (lat > 89.9) {
lat = 89.9;
}
if (lon < -360 && !bad_lon) {
lon = -360;
}
if (lon > 360 && !bad_lon) {
lon = 360;
}
double lat_rad = lat * M_PI / 180;
unsigned long long n = 1LL << zoom;
long long llx = n * ((lon + 180) / 360);
long long lly = n * (1 - (log(tan(lat_rad) + 1 / cos(lat_rad)) / M_PI)) / 2;
*x = llx;
*y = lly;
}
// http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
void tile2lonlat(long long x, long long y, int zoom, double *lon, double *lat) {
unsigned long long n = 1LL << zoom;
*lon = 360.0 * x / n - 180.0;
*lat = atan(sinh(M_PI * (1 - 2.0 * y / n))) * 180.0 / M_PI;
}
void epsg3857totile(double ix, double iy, int zoom, long long *x, long long *y) {
// Place infinite and NaN coordinates off the edge of the Mercator plane
int iy_class = fpclassify(iy);
int ix_class = fpclassify(ix);
if (iy_class == FP_INFINITE || iy_class == FP_NAN) {
iy = 40000000.0;
}
if (ix_class == FP_INFINITE || ix_class == FP_NAN) {
ix = 40000000.0;
}
*x = ix * (1LL << 31) / 6378137.0 / M_PI + (1LL << 31);
*y = ((1LL << 32) - 1) - (iy * (1LL << 31) / 6378137.0 / M_PI + (1LL << 31));
if (zoom != 0) {
*x >>= (32 - zoom);
*y >>= (32 - zoom);
}
}
void tiletoepsg3857(long long ix, long long iy, int zoom, double *ox, double *oy) {
if (zoom != 0) {
ix <<= (32 - zoom);
iy <<= (32 - zoom);
}
*ox = (ix - (1LL << 31)) * M_PI * 6378137.0 / (1LL << 31);
*oy = ((1LL << 32) - 1 - iy - (1LL << 31)) * M_PI * 6378137.0 / (1LL << 31);
}
// https://en.wikipedia.org/wiki/Hilbert_curve
void hilbert_rot(unsigned long long n, unsigned *x, unsigned *y, unsigned long long rx, unsigned long long ry) {
if (ry == 0) {
if (rx == 1) {
*x = n - 1 - *x;
*y = n - 1 - *y;
}
unsigned t = *x;
*x = *y;
*y = t;
}
}
unsigned long long hilbert_xy2d(unsigned long long n, unsigned x, unsigned y) {
unsigned long long d = 0;
unsigned long long rx, ry;
for (unsigned long long s = n / 2; s > 0; s /= 2) {
rx = (x & s) != 0;
ry = (y & s) != 0;
d += s * s * ((3 * rx) ^ ry);
hilbert_rot(s, &x, &y, rx, ry);
}
return d;
}
void hilbert_d2xy(unsigned long long n, unsigned long long d, unsigned *x, unsigned *y) {
unsigned long long rx, ry;
unsigned long long t = d;
*x = *y = 0;
for (unsigned long long s = 1; s < n; s *= 2) {
rx = 1 & (t / 2);
ry = 1 & (t ^ rx);
hilbert_rot(s, x, y, rx, ry);
*x += s * rx;
*y += s * ry;
t /= 4;
}
}
unsigned long long encode_hilbert(unsigned int wx, unsigned int wy) {
return hilbert_xy2d(1LL << 32, wx, wy);
}
void decode_hilbert(unsigned long long index, unsigned *wx, unsigned *wy) {
hilbert_d2xy(1LL << 32, index, wx, wy);
}
unsigned long long encode_quadkey(unsigned int wx, unsigned int wy) {
unsigned long long out = 0;
int i;
for (i = 0; i < 32; i++) {
unsigned long long v = ((wx >> (32 - (i + 1))) & 1) << 1;
v |= (wy >> (32 - (i + 1))) & 1;
v = v << (64 - 2 * (i + 1));
out |= v;
}
return out;
}
static std::atomic<unsigned char> decodex[256];
static std::atomic<unsigned char> decodey[256];
void decode_quadkey(unsigned long long index, unsigned *wx, unsigned *wy) {
static std::atomic<int> initialized(0);
if (!initialized) {
for (size_t ix = 0; ix < 256; ix++) {
size_t xx = 0, yy = 0;
for (size_t i = 0; i < 32; i++) {
xx |= ((ix >> (64 - 2 * (i + 1) + 1)) & 1) << (32 - (i + 1));
yy |= ((ix >> (64 - 2 * (i + 1) + 0)) & 1) << (32 - (i + 1));
}
decodex[ix] = xx;
decodey[ix] = yy;
}
initialized = 1;
}
*wx = *wy = 0;
for (size_t i = 0; i < 8; i++) {
*wx |= ((unsigned) decodex[(index >> (8 * i)) & 0xFF]) << (4 * i);
*wy |= ((unsigned) decodey[(index >> (8 * i)) & 0xFF]) << (4 * i);
}
}
void set_projection_or_exit(const char *optarg) {
struct projection *p;
for (p = projections; p->name != NULL; p++) {
if (strcmp(p->name, optarg) == 0) {
projection = p;
break;
}
if (strcmp(p->alias, optarg) == 0) {
projection = p;
break;
}
}
if (p->name == NULL) {
fprintf(stderr, "Unknown projection (-s): %s\n", optarg);
exit(EXIT_FAILURE);
}
}