-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_dataugmentation_fix3.py
871 lines (719 loc) · 31.2 KB
/
trainer_dataugmentation_fix3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
# -*- coding: utf-8 -*-
import os
import copy
import time
import pickle
import numpy as np
import random, math
import torch
from torch.autograd import Variable
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.nn.functional as F
from collections import OrderedDict
import matplotlib.pyplot as plt
from IPython import display
class DeepNetTrainer(object):
def __init__(self, model=None, criterion=None, optimizer=None, data_transf=None,
lr_scheduler=None, callbacks=None, use_gpu='auto'):
assert (model is not None) and (criterion is not None) and (optimizer is not None)
self.model = model
self.criterion = criterion
self.optimizer = optimizer
self.data_transf = data_transf
self.scheduler = lr_scheduler
#self.metrics = dict(train=dict(losses=[]), valid=dict(losses=[]))
self.metrics = dict(train=OrderedDict(losses=[]), valid=OrderedDict(losses=[]))
self.last_epoch = 0
self.callbacks = []
if callbacks is not None:
for cb in callbacks:
self.callbacks.append(cb)
cb.trainer = self
self.use_gpu = use_gpu
if use_gpu == 'auto':
self.use_gpu = torch.cuda.is_available()
if self.use_gpu:
self.model.cuda()
def fit(self, n_epochs, Xin, Yin, valid_data=None, valid_split=None, batch_size=10, shuffle=True):
if valid_data is not None:
train_loader = DataLoader(create_dataloaders(Xin, Yin, transform=self.data_transf),
batch_size=batch_size, shuffle=shuffle)
valid_loader = DataLoader(create_dataloaders(*valid_data, transform=self.data_transf),
batch_size=batch_size, shuffle=shuffle)
elif valid_split is not None:
iv = int(valid_split * Xin.shape[0])
Xval, Yval = Xin[:iv], Yin[:iv]
Xtra, Ytra = Xin[iv:], Yin[iv:]
train_loader = DataLoader(create_dataloaders(Xtra, Ytra, transform=data_transf), batch_size=batch_size, shuffle=shuffle)
valid_loader = DataLoader(create_dataloaders(Xval, Yval, transform=data_transf), batch_size=batch_size, shuffle=shuffle)
else:
train_loader = DataLoader(create_dataloaders(Xin, Yin, transform=data_transf), batch_size=batch_size, shuffle=shuffle)
valid_loader = None
train_loader
valid_loader
self.fit_loader(n_epochs, train_loader, valid_data=valid_loader)
def score(self, Xin, Yin, batch_size=10):
dloader = DataLoader(TensorDataset(Xin, Yin), batch_size=batch_size, shuffle=False)
return self.score_loader(dloader)
def evaluate(self, Xin, Yin, metrics=None, batch_size=10):
dloader = DataLoader(TensorDataset(Xin, Yin), batch_size=batch_size, shuffle=False)
return self.evaluate_loader(dloader, metrics)
def fit_loader(self, n_epochs, train_data, valid_data=None):
self.has_validation = valid_data is not None
self.n_batches = len(train_data.dataset)//train_data.batch_size # AQUIIII
try:
for cb in self.callbacks:
cb.on_train_begin(n_epochs, self.metrics)
# for each epoch
for curr_epoch in range(self.last_epoch + 1, self.last_epoch + n_epochs + 1):
# training phase
# ==============
for cb in self.callbacks:
cb.on_epoch_begin(curr_epoch, self.metrics)
epo_samples = 0
epo_batches = 0
epo_loss = 0
self.model.train(True)
if self.scheduler is not None:
self.scheduler.step()
# for each minibatch
for curr_batch, (X, Y) in enumerate(train_data):
Y = Y.squeeze(-1)
mb_size = X[0].size(0)
#print('MB size:',mb_size)
epo_samples += mb_size
epo_batches += 1
for cb in self.callbacks:
cb.on_batch_begin(curr_epoch, curr_batch, mb_size)
if self.use_gpu:
X, Y = Variable(X.cuda()), Variable(Y.cuda())
else:
X, Y = Variable(X), Variable(Y)
self.optimizer.zero_grad()
Ypred = self.model.forward(X)
loss = self.criterion(Ypred, Y)
loss.backward()
self.optimizer.step()
#vloss = loss.data.cpu()[0]
vloss = loss.data.cpu().item()
if hasattr(self.criterion, 'size_average') and self.criterion.size_average:
epo_loss += mb_size * vloss
#print(epo_loss)
else:
epo_loss += vloss
for cb in self.callbacks:
cb.on_batch_end(curr_epoch, curr_batch, Ypred, Y, loss)
# end of training minibatches
#eloss = float(epo_loss / epo_samples)
#print(eloss)
self.train_loss = float(epo_loss / epo_samples)
self.metrics['train']['losses'].append(self.train_loss)
#print(self.metrics)
# validation phase
# ================
if self.has_validation:
epo_samples = 0
epo_batches = 0
epo_loss = 0
self.model.train(False)
# for each minibatch
for curr_batch, (X, Y) in enumerate(valid_data):
Y = Y.squeeze(-1)
mb_size = X[0].size(0)
epo_samples += mb_size
epo_batches += 1
for cb in self.callbacks:
cb.on_vbatch_begin(curr_epoch, curr_batch, mb_size)
if self.use_gpu:
X, Y = Variable(X.cuda()), Variable(Y.cuda())
else:
X, Y = Variable(X), Variable(Y)
Ypred = self.model.forward(X)
loss = self.criterion(Ypred, Y)
#vloss = loss.data.cpu()[0]
vloss = loss.data.cpu().item()
if hasattr(self.criterion, 'size_average') and self.criterion.size_average:
epo_loss += vloss * mb_size
else:
epo_loss += vloss
for cb in self.callbacks:
cb.on_vbatch_end(curr_epoch, curr_batch, Ypred, Y, loss)
# end minibatches
eloss = float(epo_loss / epo_samples)
self.valid_loss = float(epo_loss / epo_samples)
self.metrics['valid']['losses'].append(self.valid_loss)
#print(self.metrics)
else:
self.metrics['valid']['losses'].append(None)
for cb in self.callbacks:
cb.on_epoch_end(curr_epoch, self.metrics)
except KeyboardInterrupt:
pass
for cb in self.callbacks:
cb.on_train_end(n_epochs, self.metrics)
def score_loader(self, data_loader):
epo_samples = 0
epo_loss = 0
self.model.train(False)
for curr_batch, (X, Y) in enumerate(data_loader):
mb_size = X[0].size(0)
epo_samples += mb_size
if self.use_gpu:
X, Y = Variable(X.cuda()), Variable(Y.cuda())
else:
X, Y = Variable(X), Variable(Y)
Ypred = self.model.forward(X)
loss = self.criterion(Ypred, Y)
vloss = loss.data.cpu()[0]
#vloss = loss.data.cpu().item()
if hasattr(self.criterion, 'size_average') and self.criterion.size_average:
epo_loss += vloss * mb_size
else:
epo_loss += vloss
epo_loss /= epo_samples
# higher score is better
return -epo_loss
def evaluate_loader(self, data_loader, metrics=None, verbose=1):
metrics = metrics or []
my_metrics = dict(train=dict(losses=[]), valid=dict(losses=[]))
for cb in metrics:
cb.on_train_begin(1, my_metrics)
cb.on_epoch_begin(1, my_metrics)
epo_samples = 0
epo_batches = 0
epo_loss = 0
try:
self.model.train(False)
ii_n = len(data_loader)
for curr_batch, (X, Y) in enumerate(data_loader):
mb_size = X[0].size(0)
epo_samples += mb_size
epo_batches += 1
if self.use_gpu:
X, Y = Variable(X.cuda()), Variable(Y.cuda())
else:
X, Y = Variable(X), Variable(Y)
Ypred = self.model.forward(X)
loss = self.criterion(Ypred, Y)
#vloss = loss.data.cpu()[0]
vloss = loss.data.cpu().item()
if hasattr(self.criterion, 'size_average') and self.criterion.size_average:
epo_loss += vloss * mb_size
else:
epo_loss += vloss
for cb in metrics:
cb.on_batch_end(1, curr_batch, Ypred, Y, loss)
#print('\revaluate: {}/{}'.format(curr_batch, ii_n - 1), end='')
print('\revaluate: {}/{}'.format(curr_batch, ii_n - 1))
print(' ok')
except KeyboardInterrupt:
print(' interrupted!')
if epo_batches > 0:
epo_loss /= epo_samples
my_metrics['train']['losses'].append(epo_loss)
for cb in metrics:
cb.on_epoch_end(1, my_metrics)
#return dict([(k, v[0]) for k, v in my_metrics['train'].items()])
return my_metrics['valid']
def load_state(self, file_basename):
load_trainer_state(file_basename, self.model, self.metrics)
def save_state(self, file_basename):
save_trainer_state(file_basename, self.model, self.metrics)
def predict(self, Xin, Yin):
if self.use_gpu:
Xin = Xin.cuda()
return predict(self.model, Xin, Yin, self.data_transf)
def predict_classes(self, Xin):
if self.use_gpu:
Xin = Xin.cuda()
return predict_classes(self.model, Xin)
def predict_probas(self, Xin):
if self.use_gpu:
Xin = Xin.cuda()
return predict_probas(self.model, Xin)
def summary(self):
pass
def load_trainer_state(file_basename, model, metrics):
model.load_state_dict(torch.load(file_basename + '.model'))
if os.path.isfile(file_basename + '.histo'):
metrics.update(pickle.load(open(file_basename + '.histo', 'rb')))
def save_trainer_state(file_basename, model, metrics):
torch.save(model.state_dict(), file_basename + '.model')
pickle.dump(metrics, open(file_basename + '.histo', 'wb'))
def predict(model, Xin, Yin, data_transf):
valid_loader = DataLoader(create_dataloaders(Xin, Yin, transform=data_transf), batch_size=Xin.shape[0], shuffle=False)
X, Y = next(iter(valid_loader))
y_pred = model.forward(Variable(X))
return y_pred.data
def predict_classes(model, Xin):
y_pred = predict(model, Xin)
_, pred = torch.max(y_pred, 1)
return pred
def predict_probas(model, Xin):
y_pred = predict(model, Xin)
probas = F.softmax(y_pred)
return probas
class create_dataloaders(torch.utils.data.Dataset):
def __init__(self, x, y=None, transform=None):
super().__init__()
self.transform = transform
self.x = x
self.y = y
def __len__(self):
return self.x.size()[0]#self.x.shape[0]
def __getitem__(self, idx):
if self.transform is not None:
xi = self.transform(self.x[idx])[0]#.repeat(3, 1, 1)#.repeat(1, 3, 1).permute(1, 0, 2)
else:
xi = self.x[idx]
if self.y is None:
yi = None
else:
yi = torch.LongTensor(self.y[idx])
#yi = torch.Tensor(self.y[idx])
return xi, yi
class RandomCrop(object):
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self, image):
#image = image.permute(1, 0, 2)
h, w = image.size()[-2:]
new_h, new_w = self.output_size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
n_image = image[:, top: top + new_h, left: left + new_w]
topt = top + new_h
leftt = left + new_w
return n_image , top, topt, left, leftt
class GetCord(object):
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self, image):
#image = image.permute(1, 0, 2)
h, w = image.size()[-2:]
new_h, new_w = self.output_size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
n_image = image[:, top: top + new_h, left: left + new_w]
topt = top + new_h
leftt = left + new_w
return top
class Crop1(object):
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self, image):
#image = image.permute(1, 0, 2)
h, w = image.size()[-2:]
new_h, new_w = self.output_size
#top = np.random.randint(0, h - new_h)
#left = np.random.randint(0, w - new_w)
#new_image = image[:,-80:,15:95]
new_image = image[:,30:110,30:110]
#image = image[:, np.ceil(h/2):top + new_h, left: left + new_w]
image = image/(torch.max(image))
return new_image
class Crop2(object):
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self, image):
#image = image.permute(1, 0, 2)
h, w = image.size()[-2:]
hh = 70
ww = 70
new_h, new_w = self.output_size
new_image2 = image[:, hh-(new_h/2):(hh-(new_h/2))+new_h, ww-(new_w/2):(ww-(new_w/2))+new_w]
#image = image/(torch.max(image)+0.00000000000000000001)
return new_image2
class Flip(object):
def __init__(self):
pass
def __call__(self, image):
rand_op = random.choice([0,1])
if rand_op == 0:
#print(image.shape)
dim = 2
dim = image.dim() + dim if dim < 0 else dim
inds = tuple(slice(None, None) if i != dim
else image.new(torch.arange(image.size(i)-1, -1, -1).tolist()).long()
for i in range(image.dim()))
image[inds]
else:
image = image
return image
def th_iterproduct(*args):
return torch.from_numpy(np.indices(args).reshape((len(args),-1)).T)
def th_nearest_interp2d(input, coords):
"""
2d nearest neighbor interpolation th.Tensor
"""
# take clamp of coords so they're in the image bounds
x = torch.clamp(coords[:,:,0], 0, input.size(1)-1).round()
y = torch.clamp(coords[:,:,1], 0, input.size(2)-1).round()
stride = torch.cuda.LongTensor(input.stride())
x_ix = x.mul(stride[1]).long()
y_ix = y.mul(stride[2]).long()
input_flat = input.view(input.size(0),-1)
mapped_vals = input_flat.gather(1, x_ix.add(y_ix))
return mapped_vals.view_as(input)
def th_bilinear_interp2d(input, coords):
"""
bilinear interpolation in 2d
"""
x = torch.clamp(coords[:,:,0], 0, input.size(1)-2)
x0 = x.floor()
x1 = x0 + 1
y = torch.clamp(coords[:,:,1], 0, input.size(2)-2)
y0 = y.floor()
y1 = y0 + 1
stride = torch.cuda.LongTensor(input.stride())
x0_ix = x0.mul(stride[1]).long()
x1_ix = x1.mul(stride[1]).long()
y0_ix = y0.mul(stride[2]).long()
y1_ix = y1.mul(stride[2]).long()
x0_ix = x0_ix.cuda()
x1_ix = x1_ix.cuda()
y0_ix = y0_ix.cuda()
y1_ix = y1_ix.cuda()
input_flat = input.view(input.size(0),-1)
vals_00 = input_flat.gather(1, x0_ix.add(y0_ix))
vals_10 = input_flat.gather(1, x1_ix.add(y0_ix))
vals_01 = input_flat.gather(1, x0_ix.add(y1_ix))
vals_11 = input_flat.gather(1, x1_ix.add(y1_ix))
xd = (x - x0).cuda()
yd = (y - y0).cuda()
xm = (1 - xd).cuda()
ym = (1 - yd).cuda()
x_mapped = (vals_00.mul(xm).mul(ym) +
vals_10.mul(xd).mul(ym) +
vals_01.mul(xm).mul(yd) +
vals_11.mul(xd).mul(yd))
return x_mapped.view_as(input)
def th_affine2d(x, matrix, mode='bilinear', center=True):
"""
2D Affine image transform on th.Tensor
Arguments
---------
x : th.Tensor of size (C, H, W)
image tensor to be transformed
matrix : th.Tensor of size (3, 3) or (2, 3)
transformation matrix
mode : string in {'nearest', 'bilinear'}
interpolation scheme to use
center : boolean
whether to alter the bias of the transform
so the transform is applied about the center
of the image rather than the origin
Example
-------
>>> import torch
>>> from torchsample.utils import *
>>> x = th.zeros(2,1000,1000)
>>> x[:,100:1500,100:500] = 10
>>> matrix = th.FloatTensor([[1.,0,-50],
... [0,1.,-50]])
>>> xn = th_affine2d(x, matrix, mode='nearest')
>>> xb = th_affine2d(x, matrix, mode='bilinear')
"""
if matrix.dim() == 2:
matrix = matrix[:2,:]
matrix = matrix.unsqueeze(0)
elif matrix.dim() == 3:
if matrix.size()[1:] == (3,3):
matrix = matrix[:,:2,:]
A_batch = matrix[:,:,:2]
if A_batch.size(0) != x.size(0):
A_batch = A_batch.repeat(x.size(0),1,1)
b_batch = matrix[:,:,2].unsqueeze(1)
# make a meshgrid of normal coordinates
_coords = th_iterproduct(x.size(1),x.size(2))
coords = _coords.unsqueeze(0).repeat(x.size(0),1,1).float()
if center:
# shift the coordinates so center is the origin
coords[:,:,0] = coords[:,:,0] - (x.size(1) / 2. - 0.5)
coords[:,:,1] = coords[:,:,1] - (x.size(2) / 2. - 0.5)
# apply the coordinate transformation
new_coords = coords.bmm(A_batch.transpose(1,2)) + b_batch.expand_as(coords)
if center:
# shift the coordinates back so origin is origin
new_coords[:,:,0] = new_coords[:,:,0] + (x.size(1) / 2. - 0.5)
new_coords[:,:,1] = new_coords[:,:,1] + (x.size(2) / 2. - 0.5)
# map new coordinates using bilinear interpolation
if mode == 'nearest':
x_transformed = th_nearest_interp2d(x.contiguous(), new_coords)
elif mode == 'bilinear':
x_transformed = th_bilinear_interp2d(x.contiguous(), new_coords)
return x_transformed
class Rotate(object):
def __init__(self,
value,
interp='bilinear',
lazy=False):
"""
Randomly rotate an image between (-degrees, degrees). If the image
has multiple channels, the same rotation will be applied to each channel.
Arguments
---------
rotation_range : integer or float
image will be rotated between (-degrees, degrees) degrees
interp : string in {'bilinear', 'nearest'} or list of strings
type of interpolation to use. You can provide a different
type of interpolation for each input, e.g. if you have two
inputs then you can say `interp=['bilinear','nearest']
lazy : boolean
if true, only create the affine transform matrix and return that
if false, perform the transform on the tensor and return the tensor
"""
self.value = value
self.interp = interp
self.lazy = lazy
def __call__(self, *inputs):
if not isinstance(self.interp, (tuple,list)):
interp = [self.interp]*len(inputs)
else:
interp = self.interp
theta = math.pi / 180 * self.value
rotation_matrix = torch.FloatTensor([[math.cos(theta), -math.sin(theta), 0],
[math.sin(theta), math.cos(theta), 0],
[0, 0, 1]])
if self.lazy:
return rotation_matrix
else:
outputs = []
for idx, _input in enumerate(inputs):
input_tf = th_affine2d(_input,
rotation_matrix,
mode=interp[idx],
center=True)
outputs.append(input_tf)
return outputs if idx > 1 else outputs[0]
class RandomRotate(object):
def __init__(self,
rotation_range,
interp='bilinear',
lazy=False):
"""
Randomly rotate an image between (-degrees, degrees). If the image
has multiple channels, the same rotation will be applied to each channel.
Arguments
---------
rotation_range : integer or float
image will be rotated between (-degrees, degrees) degrees
interp : string in {'bilinear', 'nearest'} or list of strings
type of interpolation to use. You can provide a different
type of interpolation for each input, e.g. if you have two
inputs then you can say `interp=['bilinear','nearest']
lazy : boolean
if true, only create the affine transform matrix and return that
if false, perform the transform on the tensor and return the tensor
"""
self.rotation_range = rotation_range
self.interp = interp
self.lazy = lazy
def __call__(self, *inputs):
degree = random.uniform(-self.rotation_range, self.rotation_range)
if self.lazy:
return Rotate(degree, lazy=True)(inputs[0])
else:
outputs = Rotate(degree,
interp=self.interp)(*inputs)
return outputs
class Callback(object):
def __init__(self):
pass
def on_train_begin(self, n_epochs, metrics):
pass
def on_train_end(self, n_epochs, metrics):
pass
def on_epoch_begin(self, epoch, metrics):
pass
def on_epoch_end(self, epoch, metrics):
pass
def on_batch_begin(self, epoch, batch, mb_size):
pass
def on_batch_end(self, epoch, batch, y_pred, y_true, loss):
pass
def on_vbatch_begin(self, epoch, batch, mb_size):
pass
def on_vbatch_end(self, epoch, batch, y_pred, y_true, loss):
pass
class AccuracyMetric(Callback):
def __init__(self):
super().__init__()
self.name = 'acc'
def on_batch_end(self, epoch_num, batch_num, y_pred, y_true, loss):
_, preds = torch.max(y_pred.data, 1)
ok = (preds == y_true.data).sum()
#self.train_accum += ok
self.train_accum += ok.item()
self.n_train_samples += y_pred.size(0)
def on_vbatch_end(self, epoch_num, batch_num, y_pred, y_true, loss):
_, preds = torch.max(y_pred.data, 1)
ok = (preds == y_true.data).sum()
#self.valid_accum += ok
self.train_accum += ok.item()
self.n_valid_samples += y_pred.size(0)
def on_epoch_begin(self, epoch_num, metrics):
self.train_accum = 0
self.valid_accum = 0
self.n_train_samples = 0
self.n_valid_samples = 0
def on_epoch_end(self, epoch_num, metrics):
if self.n_train_samples > 0:
metrics['train'][self.name].append(1.0 * self.train_accum / self.n_train_samples)
if self.n_valid_samples > 0:
metrics['valid'][self.name].append(1.0 * self.valid_accum / self.n_valid_samples)
def on_train_begin(self, n_epochs, metrics):
metrics['train'][self.name] = []
metrics['valid'][self.name] = []
class ModelCheckpoint(Callback):
def __init__(self, model_basename, reset=False, verbose=0):
super().__init__()
os.makedirs(os.path.dirname(model_basename), exist_ok=True)
self.basename = model_basename
self.reset = reset
self.verbose = verbose
def on_train_begin(self, n_epochs, metrics):
if (self.basename is not None) and (not self.reset) and (os.path.isfile(self.basename + '.model')):
load_trainer_state(self.basename, self.trainer.model, self.trainer.metrics)
if self.verbose > 0:
print('Model loaded from', self.basename + '.model')
self.trainer.last_epoch = len(self.trainer.metrics['train']['losses'])
if self.trainer.scheduler is not None:
self.trainer.scheduler.last_epoch = self.trainer.last_epoch
self.best_model = copy.deepcopy(self.trainer.model)
self.best_epoch = self.trainer.last_epoch
self.best_loss = 1e10
if self.trainer.last_epoch > 0:
self.best_loss = self.trainer.metrics['valid']['losses'][-1] or self.trainer.metrics['train']['losses'][-1]
def on_train_end(self, n_epochs, metrics):
if self.verbose > 0:
print('Best model was saved at epoch {} with loss {:.5f}: {}'
.format(self.best_epoch, self.best_loss, self.basename))
def on_epoch_end(self, epoch, metrics):
eloss = metrics['valid']['losses'][-1] or metrics['train']['losses'][-1]
if eloss < self.best_loss:
self.best_loss = eloss
self.best_epoch = epoch
self.best_model = copy.deepcopy(self.trainer.model)
if self.basename is not None:
save_trainer_state(self.basename, self.trainer.model, self.trainer.metrics)
if self.verbose > 1:
print('Model saved to', self.basename + '.model')
class PrintCallback(Callback):
def __init__(self):
super().__init__()
def on_train_begin(self, n_epochs, metrics):
print('Start training for {} epochs'.format(n_epochs))
def on_train_end(self, n_epochs, metrics):
n_train = len(metrics['train']['losses'])
print('Stop training at epoch: {}/{}'.format(n_train, self.trainer.last_epoch + n_epochs))
def on_epoch_begin(self, epoch, metrics):
self.t0 = time.time()
def on_epoch_end(self, epoch, metrics):
is_best = ''
has_valid = len(metrics['valid']['losses']) > 0 and metrics['valid']['losses'][0] is not None
has_metrics = len(metrics['train'].keys()) > 1
etime = time.time() - self.t0
if has_valid:
if epoch == int(np.argmin(metrics['valid']['losses'])) + 1:
is_best = 'best'
if has_metrics:
# validation and metrics
metric_name = [mn for mn in metrics['valid'].keys() if mn != 'losses'][0]
# metric_name = list(self.trainer.compute_metric.keys())[0]
print('{:3d}: {:5.1f}s T: {:.5f} {:.5f} V: {:.5f} {:.5f} {}'
.format(epoch, etime,
metrics['train']['losses'][-1],
metrics['train'][metric_name][-1],
metrics['valid']['losses'][-1],
metrics['valid'][metric_name][-1], is_best))
else:
# validation and no metrics
print('{:3d}: {:5.1f}s T: {:.5f} V: {:.5f} {}'
.format(epoch, etime,
metrics['train']['losses'][-1],
metrics['valid']['losses'][-1], is_best))
else:
if epoch == int(np.argmin(metrics['train']['losses'])) + 1:
is_best = 'best'
if has_metrics:
# no validation and metrics
metric_name = list(self.trainer.compute_metric.keys())[0]
print('{:3d}: {:5.1f}s T: {:.5f} {:.5f} {}'
.format(epoch, etime,
metrics['train']['losses'][-1],
metrics['train'][metric_name][-1], is_best))
else:
# no validation and no metrics
print('{:3d}: {:5.1f}s T: {:.5f} {}'
.format(epoch, etime,
metrics['train']['losses'][-1], is_best))
class PlotCallback(Callback):
def __init__(self, interval=1, max_loss=None):
super().__init__()
self.interval = interval
self.max_loss = max_loss
def on_train_begin(self, n_epochs, metrics):
self.line_train = None
self.line_valid = None
self.dot_train = None
self.dot_valid = None
self.fig = plt.figure(figsize=(15, 6))
self.ax = self.fig.add_subplot(1, 1, 1)
self.ax.grid(True)
self.plot_losses(self.trainer.metrics['train']['losses'],
self.trainer.metrics['valid']['losses'])
def on_epoch_end(self, epoch, metrics):
if epoch % self.interval == 0:
display.clear_output(wait=True)
self.plot_losses(self.trainer.metrics['train']['losses'],
self.trainer.metrics['valid']['losses'])
def plot_losses(self, htrain, hvalid):
epoch = len(htrain)
if epoch == 0:
return
x = np.arange(1, epoch + 1)
if self.line_train:
self.line_train.remove()
if self.dot_train:
self.dot_train.remove()
self.line_train, = self.ax.plot(x, htrain, color='#1f77b4', linewidth=2, label='training loss')
best_epoch = int(np.argmin(htrain)) + 1
best_loss = htrain[best_epoch - 1]
self.dot_train = self.ax.scatter(best_epoch, best_loss, c='#1f77b4', marker='o')
if hvalid[0] is not None:
if self.line_valid:
self.line_valid.remove()
if self.dot_valid:
self.dot_valid.remove()
self.line_valid, = self.ax.plot(x, hvalid, color='#ff7f0e', linewidth=2, label='validation loss')
best_epoch = int(np.argmin(hvalid)) + 1
best_loss = hvalid[best_epoch - 1]
self.dot_valid = self.ax.scatter(best_epoch, best_loss, c='#ff7f0e', marker='o')
self.ax.legend()
# self.ax.vlines(best_epoch, *self.ax.get_ylim(), colors='#EBDDE2', linestyles='dashed')
self.ax.set_title('Best epoch: {}, Current epoch: {}'.format(best_epoch, epoch))
display.display(self.fig)
time.sleep(0.1)