-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathklotski.ml
571 lines (444 loc) · 11.9 KB
/
klotski.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
(*
* Author : Giorgio Marinelli
* Year : 2016
*
* Description : A Klotski game solver
*
*)
(*
* The prelude
*)
exception NotFound
type 'e rel = 'e -> 'e list ;;
type 'e prop = 'e -> bool ;;
type ('a, 'set) set_operations =
{ empty : 'set (* The empty set. *)
; mem : 'a -> 'set -> bool (* [mem x s = true] iff [x] is in [s]. *)
; add : 'a -> 'set -> 'set (* [add s x] is the set [s] union {x}. *)
}
;;
type ('configuration, 'move) puzzle =
{ move : 'configuration -> 'move -> 'configuration
; possible_moves : 'configuration -> 'move list
; final : 'configuration -> bool
}
;;
type piece_kind = S | H | V | C | X ;;
type piece = piece_kind * int ;;
let string_of_piece : piece -> string =
fun (k, _) ->
match k with
| S -> "S"
| H -> "H"
| V -> "V"
| C -> "C"
| X -> "X"
;;
let x = (X, 0) and s = (S, 0) and h = (H, 0) ;;
let (c0, c1, c2, c3) = ((C, 0), (C, 1), (C, 2), (C, 3)) ;;
let (v0, v1, v2, v3) = ((V, 0), (V, 1), (V, 2), (V, 3)) ;;
let all_pieces : piece list = [ s; h; c0; c1; c2; c3; v0; v1; v2; v3 ] ;;
type board = piece array array ;;
let initial_board =
[| [| v0 ; s ; s ; v1 |];
[| v0 ; s ; s ; v1 |];
[| v2 ; h ; h ; v3 |];
[| v2 ; c0 ; c1 ; v3 |];
[| c2 ; x ; x ; c3 |] |]
;;
let initial_board_simpler =
[| [| c2 ; s ; s ; c1 |] ;
[| c0 ; s ; s ; c3 |] ;
[| v1 ; v2 ; v3 ; v0 |] ;
[| v1 ; v2 ; v3 ; v0 |] ;
[| x ; x ; x ; x |] |]
;;
let initial_board_trivial =
[| [| x ; s ; s ; x |] ;
[| x ; s ; s ; x |] ;
[| x ; x ; x ; x |] ;
[| x ; x ; x ; x |] ;
[| x ; x ; x ; x |] |]
;;
type direction = { dcol : int ; drow : int } ;;
type move = Move of piece * direction * board ;;
let move _ (Move (_, _, b)) = b ;;
let print_board : board -> unit =
fun cur_board ->
Array.iter
( fun l ->
let s = Array.fold_right
( fun x y -> (string_of_piece x) ^ " " ^ y )
l
""
in
print_string s ;
print_newline ()
)
cur_board
;;
(*
* Extra functions on lists, arrays, and matrices
*)
let rec list_uniq : 'a list -> 'a list =
fun l ->
match l with
| [] -> []
| x :: xs -> x :: list_uniq (List.filter (fun y -> x <> y) xs)
;;
let list_product2 : 'a list -> 'b list -> ('a * 'b) list =
fun l1 l2 ->
List.concat (List.map (fun x -> List.map (fun y -> (x, y)) l2) l1)
;;
let array_iter2 : ('a -> 'b -> unit) -> 'a array -> 'b array -> unit =
fun f a b ->
if Array.length a <> Array.length b then
invalid_arg "array_iter2: arrays must have the same length"
else
for i = 0 to Array.length a - 1 do
f (Array.unsafe_get a i) (Array.unsafe_get b i)
done
;;
let array_fold_left : ('a -> 'b -> 'a) -> 'a -> 'b array -> 'a =
fun f x a ->
let r = ref x
in
for i = 0 to Array.length a - 1 do
r := f !r (Array.unsafe_get a i)
done ; !r
;;
let array_fold_right : ('b -> 'a -> 'a) -> 'b array -> 'a -> 'a =
fun f a x ->
let r = ref x
in
for i = Array.length a - 1 downto 0 do
r := f (Array.unsafe_get a i) !r
done ; !r
;;
let matrix_width : 'a array array -> int =
fun m ->
if Array.length m = 0 then 0 else Array.length m.(0)
;;
let matrix_height : 'a array array -> int =
fun m ->
Array.length m
;;
let matrix_iter : ('a -> unit) -> 'a array array -> unit =
fun f m ->
Array.iter (fun v -> Array.iter (fun x -> f x) v) m
;;
let matrix_iteri : ((int * int) -> 'a -> unit) -> 'a array array -> unit =
fun f m ->
Array.iteri (fun j v -> Array.iteri (fun i x -> f (i, j) x) v) m
;;
let matrix_iter2 : ('a -> 'b -> unit) -> 'a array array -> 'b array array -> unit =
fun f m1 m2 ->
array_iter2 (fun x y -> array_iter2 f x y) m1 m2
;;
let matrix_map : ('a -> 'b) -> 'a array array -> 'b array array =
fun f m ->
Array.map (fun v -> Array.map (fun x -> f x) v) m
;;
let matrix_mapi : ((int * int) -> 'a -> 'b) -> 'a array array -> 'b array array =
fun f m ->
Array.mapi (fun j v -> Array.mapi (fun i x -> f (i, j) x) v) m
;;
let matrix_fold_left : ('a -> 'b -> 'a) -> 'a -> 'b array array -> 'a =
fun f x m ->
array_fold_left (fun x' y' -> (array_fold_left f x' y')) x m
;;
let matrix_fold_right : ('b -> 'a -> 'a) -> 'b array array -> 'a -> 'a =
fun f m x ->
array_fold_right (fun x' y' -> (array_fold_right f x' y')) m x
;;
(*
* Some extra functions
*)
let rec loop : ('a -> bool) -> ('a -> 'a) -> 'a -> 'a =
fun p f x ->
match p x with
| true -> x
| _ -> loop p f (f x)
;;
let rec exists : ('a -> bool) -> 'a list -> bool =
fun p l ->
match l with
| [] -> false
| x :: xs -> if p x then true else exists p xs
;;
let rec find : ('a -> bool) -> 'a list -> 'a =
fun p l ->
match l with
| [] -> raise NotFound
| x :: xs -> if p x then x else find p xs
;;
(*
* The problem solver
*)
let near : int rel =
fun x -> [x - 2 ; x - 1 ; x ; x + 1 ; x + 2]
;;
let flat_map : 'e rel -> ('e list -> 'e list) =
fun r -> fun l -> List.fold_right (fun x y -> (r x) @ y) l []
;;
let rec iter_rel : 'e rel -> int -> 'e rel =
fun rel n ->
if n < 1 then
fun x -> [x]
else
fun x -> list_uniq (flat_map rel ((iter_rel rel (n - 1)) x))
;;
let solve : 'a rel -> 'a prop -> 'a -> 'a =
let rec solve' =
fun r p l ->
try
find p l
with
| NotFound -> solve' r p (flat_map r l)
in
fun r p x ->
solve' r p [x]
;;
let solve_path : 'a rel -> 'a prop -> 'a -> 'a list =
let path_rel =
fun r ->
fun l ->
match l with
| [] -> []
| x :: _ -> List.map (fun y -> y :: l) (r x)
in
let path_prop =
fun p ->
fun l ->
match l with
| [] -> false
| x :: _ -> p x
in
fun r p x ->
List.rev (solve (path_rel r) (path_prop p) [x])
;;
let archive_map : ('a, 'set) set_operations -> 'a rel -> ('set * 'a list) -> ('set * 'a list) =
fun opset r (s, l) ->
List.fold_left
(
fun (s', l') y ->
if opset.mem y s' then
(s', l')
else
(opset.add y s', y :: l')
)
(s, [])
(flat_map r l)
;;
let solve' : ('a, 'set) set_operations -> 'a rel -> 'a prop -> 'a -> 'a =
let rec solve'' =
fun opset r p (s, l) ->
try
find p l
with
| NotFound -> solve'' opset r p (archive_map opset r (s, l))
in
fun opset r p x ->
solve'' opset r p (opset.empty, [x])
;;
let solve_path' : ('a list, 'set) set_operations -> 'a rel -> 'a prop -> 'a -> 'a list =
let path_rel =
fun r ->
fun l ->
match l with
| [] -> []
| x :: _ -> List.map (fun y -> y :: l) (r x)
in
let path_prop =
fun p ->
fun l ->
match l with
| [] -> false
| x :: _ -> p x
in
fun opset r p x ->
List.rev (solve' opset (path_rel r) (path_prop p) [x])
;;
let solve_puzzle : ('c, 'm) puzzle -> ('c list, 's) set_operations -> 'c -> 'c list =
fun puzzle_game opset conf ->
let r =
fun c ->
List.map (puzzle_game.move c) (puzzle_game.possible_moves c)
and p =
puzzle_game.final
in
solve_path' opset r p conf
;;
(*
* A solver for Klotski
*)
type coordinates = int * int
;;
let board_width : int = matrix_width initial_board
and board_height : int = matrix_height initial_board
;;
let all_directions : direction list =
[
{ dcol = 0 ; drow = 1 } ;
{ dcol = 0 ; drow = -1 } ;
{ dcol = 1 ; drow = 0 } ;
{ dcol = -1 ; drow = 0 }
]
;;
let final : board -> bool =
fun board ->
let line4 = board.(3)
and line5 = board.(4)
in
line4.(1) = (S, 0) && line4.(2) = (S, 0) &&
line5.(1) = (S, 0) && line5.(2) = (S, 0)
;;
let find_piece_coordinates : board -> piece -> coordinates list =
fun b p ->
let result = ref []
in
matrix_iteri
(fun (x, y) p' -> if p' = p then result := (x, y) :: !result else ()) b ;
!result
;;
let new_coordinates : coordinates list -> direction -> coordinates list =
fun l { drow ; dcol } ->
List.map (fun (x, y) -> (x + dcol, y + drow)) l
;;
let valid_coordinates : (int * int) list -> board -> piece -> bool =
fun l b p ->
let prop (x, y) b =
if
(x >= 0) && (x < board_width) &&
(y >= 0) && (y < board_height)
then
b.(y).(x) = p || b.(y).(x) = (X, 0)
else
false
in
List.fold_right (fun x y -> prop x b && y) l true
;;
let move_piece : board -> piece -> direction -> board option =
fun b p d ->
let old_pos = find_piece_coordinates b p
in
let new_pos = new_coordinates old_pos d
in
if not (valid_coordinates new_pos b p) then
None
else
let b' =
matrix_mapi
(
fun (i, j) x ->
let is_old = List.mem (i, j) old_pos
and is_new = List.mem (i, j) new_pos
in
match (is_new, is_old) with
| (true, _) -> p
| (_, true) -> (X, 0)
| _ -> x
) b
in
Some b'
;;
let pieces_on_board : board -> piece list =
fun b ->
list_uniq (matrix_fold_right (fun x y -> if x <> (X, 0) then x :: y else y) b [])
;;
let possible_moves : board -> move list =
fun b ->
let all_pieces_on_board = pieces_on_board b
in
let all_moves = list_product2 all_pieces_on_board all_directions
in
List.fold_right
(
fun (xp, xd) y ->
match move_piece b xp xd with
| None -> y
| Some b' -> (Move (xp, xd, b')) :: y
)
all_moves
[]
;;
module Boards =
struct
type t = board ;;
let compare_pieces : piece -> piece -> int =
let compare_kind : piece_kind -> piece_kind -> int =
fun pk1 pk2 ->
match (pk1, pk2) with
| (_, _) when pk1 = pk2 -> 0
| (S, _) -> 1
| (H, _) when pk2 <> S -> 1
| (C, _) when pk2 <> S && pk2 <> H -> 1
| (V, _) when pk2 <> S && pk2 <> H && pk2 <> C -> 1
| (_, _) -> -1
in
fun (pk1, pn1) (pk2, pn2) ->
match ((pk1, pn1), (pk2, pn2)) with
| _ when (compare_kind pk1 pk2) < 0 -> -1
| _ when (compare_kind pk1 pk2) > 0 -> 1
| _ when pn1 < pn2 -> -1
| _ when pn1 > pn2 -> 1
| _ -> 0
;;
exception Equal ;;
exception Lower_than ;;
exception Greater_than ;;
let compare : board -> board -> int =
fun b1 b2 ->
try
matrix_iter2
(
fun p1 p2 ->
let result = compare_pieces p1 p2
in
match result with
| _ when result < 0 -> raise Lower_than
| _ when result > 0 -> raise Greater_than
| _ -> ()
) b1 b2 ;
raise Equal
with
| Equal -> 0
| Lower_than -> -1
| Greater_than -> 1
;;
end
;;
module BoardSet = Set.Make (Boards)
;;
let solve_klotski : board -> board list =
fun b ->
let klotski_puzzle : (board, move) puzzle =
{
move ;
possible_moves ;
final
}
and klotski_opset : (board list, 's) set_operations =
{
empty = BoardSet.empty ;
mem = (fun xs -> BoardSet.mem (List.hd xs)) ;
add = (fun xs -> BoardSet.add (List.hd xs))
}
in
solve_puzzle klotski_puzzle klotski_opset b
;;
let () =
let cur_board = initial_board_simpler
in
let solution = solve_klotski cur_board
in
( print_newline ()
; print_string "The initial board is:\n\n"
; print_board cur_board
; print_newline ()
; print_string "This is a possible solution:\n\n"
; List.iter
( fun m -> print_board m ; print_newline () )
solution
)
;;