-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathaggregate_results.py
71 lines (54 loc) · 1.85 KB
/
aggregate_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import glob
import pandas
from joblib import Parallel, delayed
from tqdm import tqdm
from lib.grid import GRIDS
def process_file(f):
try:
df = pandas.read_csv(f)
except:
print(f'error in {f}')
return None
# extract info from filename
d, s, t, m, g = f.split('/')[-1].split('.')[0].split('_')
# add data as columns
df['data'] = d
df['scaling'] = s
df['trafo'] = t
df['model'] = m
df['grid'] = g
if d[:5] == 'slice':
data_type, data_axis, _, _ = d.split('-')
df['data_smoothing'] = d[:7] != 'sliceNS'
df['data_type'] = 'slice'
df['data_axis'] = data_axis
df['target'] = d.split('-')[-1]
if d[:5] == 'voxel':
data_type, data_modality, _ = d.split('-')
df['data_smoothing'] = d[:8] != 'voxelsNS'
df['data_type'] = 'voxel'
df['data_modality'] = data_modality
df['target'] = d.split('-')[-1]
return df
def read_results(grid='v3-a', hyperopt=False):
if hyperopt is True:
F = glob.glob('results/*.hy_res')
else:
F = glob.glob('results/*.res')
dfs = Parallel(n_jobs=20)(delayed(process_file)(f) for f in tqdm(F))
dfs = [i for i in dfs if i is not None]
DF = pandas.concat(dfs, ignore_index=True)
DF = DF[DF.model != 'majority']
DF = DF[DF.model != 'gaussiannb']
DF = DF[DF.model != 'bernoullinb']
DF = DF[DF.grid == grid]
return DF
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('--grid', default='v1', type=str, choices=list(GRIDS.keys()))
parser.add_argument('--hyperopt', action="store_true", default=False)
args = parser.parse_args()
DF = read_results(args.grid, hyperopt=args.hyperopt)
DF = DF.drop_duplicates()
DF.to_csv(f'''results{'.hyperopt' if args.hyperopt else ''}.csv''')