-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel-02.qmd
660 lines (573 loc) · 18.3 KB
/
model-02.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
---
title: "Thesis - Model"
toc: true
number-sections: true
code-fold: true
warning: false
output: false
error: true
format: gfm
editor_options:
markdown:
wrap: sentence
---
After failing to come up with meaningful results in model-01 attempt with a linear regression model predicting approved budget, we will now examine the different parameters correlated with varying degrees of SELA budget usage.
# Load libraries
```{r}
library(tidyverse)
library(timeDate)
library(tidymodels)
library(modelr)
library(corrr)
library(ggfortify)
library(DescTools)
library(scales)
library(gtsummary)
library(flextable)
# library(showtext)
```
# Graphics
```{r}
theme_set(theme_light())
# font_add(family = "David", regular = "David.ttf")
# showtext_auto()
#
# theme_update(
# text = element_text(family = "David")
# )
```
# Selecting relevant variables
```{r}
sela_df <- df %>%
select(
name,
muni_id,
district,
type,
pop,
pop_2015,
likud_pct,
coal_pct,
ses_2013_c,
peri_2004_c,
sa_data,
sector,
is_nat_pri,
starts_with("budget")
)
```
# Checking eligibility for both SELA budget types
## Festival eligibility
The population year determined to use to decide eligibility is 2015. using 2018 created some municipalities that changed population category between the years. the 2015 year was the latest available during the start of 2018.
```{r}
sela_df <- sela_df %>%
mutate(
is_elig_fest = case_when(
pop_2015 > 100000 ~ FALSE,
ses_2013_c > 7 ~ FALSE,
ses_2013_c < 7 ~ TRUE,
type == "מועצה אזורית" & peri_2004_c <= 2 ~ TRUE,
is_nat_pri ~ TRUE,
TRUE ~ FALSE
),
budget_elig_fest = case_when(
!is_elig_fest ~ 0,
pop_2015 <= 5000 ~ 70000,
pop_2015 <= 20000 ~ 115000,
pop_2015 > 20000 ~ 200000
)
)
sela_df %>%
ggplot(aes(budget_approved_fest/budget_elig_fest)) +
geom_histogram()
sela_df %>%
filter(!is_elig_fest & budget_approved_fest > 0)
sela_df %>%
filter(is_elig_fest & budget_approved_fest < budget_elig_fest)
```
Right now it seems we have two municipalities that are seemingly not eligible for festivals but got budgeted: Hof Ashkelon and Beit Shemesh.
## Initiatives eligibility
The eligibility score of each municipality is calculated: first the unbudgeted municipalities are filtered out and then the score is calculated according the the regulations. the score is normalized between all eligible municipalities and then multiplied by a number close to the total budget allocated. the specific number was decided through trial and error to match the vast majority of municipalities. A ratio between potential budget and score is calculated. Finally, summary charts and tables are presented.
```{r}
sela_df <- sela_df %>%
mutate(
score_elig_init = case_when(
budget_approved_init == 0 ~ 0,
pop_2015 <= 10000 ~ 1,
pop_2015 <= 50000 ~ 2,
pop_2015 <= 100000 ~ 3,
pop_2015 <= 150000 ~ 4,
pop_2015 <= 200000 ~ 5,
pop_2015 <= 500000 ~ 6,
pop_2015 > 500000 ~ 7
),
score_elig_init = case_when(
pop_2015 > 100000 ~ score_elig_init,
is_nat_pri ~ score_elig_init * 2,
ses_2013_c <= 6 ~ score_elig_init * 2,
peri_2004_c <= 2 ~ score_elig_init * 2,
TRUE ~ score_elig_init
),
budget_elig_init = 23907075 * score_elig_init / sum(score_elig_init)
)
ratio_elig_init <- sela_df %>%
summarize(budget_elig_init / score_elig_init) %>%
pull() %>%
first()
sela_df %>%
ggplot(aes(budget_approved_init - budget_elig_init)) +
geom_histogram()
sela_df %>%
count(budget_approved_init - budget_elig_init)
sela_df %>%
filter(budget_approved_init > budget_elig_init) %>%
arrange(desc(budget_approved_init - budget_elig_init))
```
After calculating the eligibility sum for all municipalities, a further calculation is required for unbudgeted municipalities, as they were filtered out of the previous section. each unbudgeted municipality is calculated a score and a potential budget, multiplied by the ratio calculated in the previous section.
```{r}
sela_df <- sela_df %>%
mutate(
score_elig_init = case_when(
budget_approved_init > 0 ~ score_elig_init,
pop_2015 <= 10000 ~ 1,
pop_2015 <= 50000 ~ 2,
pop_2015 <= 100000 ~ 3,
pop_2015 <= 150000 ~ 4,
pop_2015 <= 200000 ~ 5,
pop_2015 <= 500000 ~ 6,
pop_2015 > 500000 ~ 7
),
score_elig_init = case_when(
budget_approved_init > 0 ~ score_elig_init,
pop_2015 > 100000 ~ score_elig_init,
is_nat_pri ~ score_elig_init * 2,
ses_2013_c <= 6 ~ score_elig_init * 2,
peri_2004_c <= 2 ~ score_elig_init * 2,
TRUE ~ score_elig_init
),
budget_elig_init = case_when(
budget_approved_init > 0 ~ budget_elig_init,
TRUE ~ score_elig_init * ratio_elig_init
)
)
sela_df %>%
ggplot(aes(budget_approved_init - budget_elig_init)) +
geom_histogram()
sela_df %>%
count(budget_approved_init - budget_elig_init)
sela_df %>%
filter(budget_approved_init > budget_elig_init) %>%
arrange(desc(budget_approved_init - budget_elig_init))
```
# Initiatives Execution
Calculating the execution percent of cultural initiatives budget and examining its distribution.
```{r}
sela_df <- sela_df %>%
mutate(
exec_pct_init = budget_approved_init / budget_elig_init
)
sela_df %>%
ggplot(aes(exec_pct_init)) +
geom_histogram()
```
Visualizing the relationships between relevant variables and the execution percent. Box plots for categorical variables and scatter plots for continuous variables.
```{r}
sela_df %>%
filter(budget_elig_init - budget_approved_init > 1000) %>%
select(
name,
district,
type,
ses_2013_c,
peri_2004_c,
sector,
exec_pct_init
) %>%
mutate(across(-exec_pct_init, ~ as_factor(.))) %>%
pivot_longer(!c(name, exec_pct_init), names_to = "var", values_to = "value") %>%
ggplot(aes(value, exec_pct_init)) +
geom_boxplot() +
facet_wrap(~ var, scales = "free_y") +
coord_flip()
sela_df %>%
filter(budget_elig_init - budget_approved_init > 1000) %>%
select(
name,
pop_2015,
likud_pct,
coal_pct,
exec_pct_init
) %>%
mutate(pop_2015_log10 = log10(pop_2015)) %>%
pivot_longer(!c(name, exec_pct_init), names_to = "var", values_to = "value") %>%
ggplot(aes(value, exec_pct_init)) +
geom_point() +
facet_wrap(~ var, scales = "free_x") +
geom_smooth(se = FALSE)
sela_df %>%
filter(budget_elig_init - budget_approved_init > 1000) %>%
summarise(cor(log10(pop_2015), exec_pct_init))
```
# Eligibilty linear modelling
## Per capita modelling
### Transform dependant variable
```{r}
sela_df <- sela_df %>%
mutate(
budget_elig_tot = budget_elig_fest + budget_elig_init,
budget_elig_tot_capita = budget_elig_tot / pop_2015
)
sela_df %>%
ggplot(aes(budget_elig_tot_capita)) +
geom_histogram(aes(y = ..density..)) +
geom_density()
sela_df %>%
ggplot(aes(log10(budget_elig_tot_capita))) +
geom_histogram(aes(y = ..density..)) +
geom_density()
sela_df %>%
ggplot(aes(sqrt(budget_elig_tot_capita))) +
geom_histogram(aes(y = ..density..)) +
geom_density()
sela_df %>%
ggplot(aes((budget_elig_tot_capita)^0.3)) +
geom_histogram(aes(y = ..density..)) +
geom_density()
sela_df %>%
transmute(
budget_elig_tot_capita_log10 = log10(budget_elig_tot_capita),
budget_elig_tot_capita_pw.1 = budget_elig_tot_capita ^ 0.1,
budget_elig_tot_capita_pw.2 = budget_elig_tot_capita ^ 0.2,
budget_elig_tot_capita_pw.3 = budget_elig_tot_capita ^ 0.3,
budget_elig_tot_capita_pw.4 = budget_elig_tot_capita ^ 0.4,
budget_elig_tot_capita_pw.5 = budget_elig_tot_capita ^ 0.5
) %>%
pivot_longer(everything(), names_to = "fn", names_prefix = "budget_elig_tot_capita_", values_to = "value") %>%
group_by(fn) %>%
summarise(
skewness = skewness(value),
kurtosis = kurtosis(value)
)
```
It seems that the transformation of per capita to the power of 0.3 creates the most normally distributed variable with the least skewness and kurtosis.
### Linear model per capita transformed
```{r}
sela_df <- sela_df %>%
mutate(budget_elig_tot_capita_pw.3 = budget_elig_tot_capita ^ 0.3)
sela_mdl1 <- lm(budget_elig_tot_capita_pw.3 ~ sector * likud_pct, data = sela_df)
sela_mdl1 %>%
tidy()
sela_mdl1 %>%
glance()
sela_mdl1 %>%
augment() %>%
ggplot(aes(likud_pct, color = sector)) +
geom_point(aes(y = budget_elig_tot_capita_pw.3)) +
geom_line(aes(y = .fitted))
```
### Linear model per capita untransformed
```{r}
sela_mdl1a <- lm(budget_elig_tot_capita ~ sector * likud_pct, data = sela_df)
sela_mdl1a %>%
tidy()
sela_mdl1a %>%
glance()
sela_mdl1a %>%
augment() %>%
ggplot(aes(likud_pct, budget_elig_tot_capita, color = sector)) +
geom_line(aes(y = .fitted)) +
geom_point()
```
The per capita budget modelling, both transformed and untransformed, went unsuccessful, as the slope coefficient for the jewish sector was negative.
We will now examine total budget rather than per capita budget.
## total budget modelling
### Check distribution of dependant variable
```{r}
sela_df %>%
ggplot(aes(budget_elig_tot)) +
geom_histogram() +
theme_minimal() +
scale_x_continuous(labels = label_comma()) +
labs(
x = 'גובה הזכאות של רשות מקומית לתמיכה תקציבית של תקנת סל"ע בשנת 2018 (ש"ח)',
y = "מספר רשויות"
)
sela_df %>%
summarise(
mean = mean(budget_elig_tot),
sd = sd(budget_elig_tot),
skewness = skewness(budget_elig_tot),
kurtosis = kurtosis(budget_elig_tot)
)
```
### Distribution table of all variables
```{r}
sela_df %>%
select(
budget_elig_tot,
pop_2015,
ses_2013_c,
peri_2004_c,
sector,
likud_pct
) %>%
tbl_summary(
statistic = list(all_continuous() ~ "{mean} ({sd})")
)
```
### Model with Likud voting percent
```{r}
sela_mdl2 <- lm(budget_elig_tot ~ sector * likud_pct, data = sela_df)
sela_mdl2 %>%
tidy()
sela_mdl2 %>%
glance()
sela_mdl2 %>%
augment() %>%
ggplot(aes(likud_pct, budget_elig_tot, color = sector)) +
geom_line(aes(y = .fitted)) +
geom_point()
```
This shows a good relationship so that jewish municipalities are receiveing more budget as the Likud voting percent rises.
### Model with coalition voting percent
```{r}
sela_mdl2 <- lm(budget_elig_tot ~ sector * coal_pct, data = sela_df)
sela_mdl2 %>%
tidy()
sela_mdl2 %>%
glance()
sela_mdl2 %>%
augment() %>%
ggplot(aes(coal_pct, budget_elig_tot, color = sector)) +
geom_line(aes(y = .fitted)) +
geom_point()
```
This model is even stronger, also showing a positive relationship between total SELA budget and coalition parties voting percentage, but with an adjusted R-Squared of 0.22.
Let's check if it still stands after adding control variables
```{r}
sela_mdl3 <- lm(budget_elig_tot ~ sector : likud_pct + pop_2015 + ses_2013_c + peri_2004_c, data = sela_df)
sela_mdl3_control <- lm(budget_elig_tot ~ pop_2015 + ses_2013_c + peri_2004_c, data = sela_df)
sela_mdl3_control2 <- lm(budget_elig_tot ~ pop_2015 + ses_2013_c + peri_2004_c + is_nat_pri, data = sela_df)
anova(sela_mdl3_control, sela_mdl3)
sela_mdl3 %>%
tidy()
sela_mdl3 %>%
glance()
sela_mdl3_control %>%
tidy()
sela_mdl3_control %>%
glance()
sela_mdl3 %>%
augment() %>%
ggplot(aes(likud_pct, budget_elig_tot, color = sector)) +
geom_line(aes(y = .fitted)) +
geom_point()
sela_mdl3 %>%
augment() %>%
ggplot(aes(likud_pct, .fitted - sela_mdl3_control %>% augment() %>% pull(.fitted), color = sector)) +
geom_line() +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
```
The model is still significant for Likud voting percentage after adding control variables.
This is not the case for coalition voting percentage.
Let's create a better plot for the last plot of the difference between the two models.
```{r}
sela_mdl3 %>%
augment() %>%
ggplot(aes(
likud_pct, .fitted - sela_mdl3_control %>% augment() %>% pull(.fitted),
color = sector,
shape = sector
)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
scale_y_continuous(labels = label_comma()) +
scale_x_continuous(labels = label_percent(scale = 1)) +
scale_color_discrete(labels = c("ערבי", "יהודי")) +
scale_shape_discrete(labels = c("ערבי", "יהודי")) +
guides(shape = guide_legend(override.aes = list(size = 3))) +
theme(legend.position = "bottom") +
labs(
x = "אחוז הצבעה לליכוד בבחירות 2015",
y = '\u202B"דיבידנד הנאמנות בתרבות" (ש"ח)',
color = "מגזר",
shape = "מגזר"
)
```
Let's put the two models in a table.
```{r}
tbl_merge(
list(
tbl_regression(
sela_mdl3_control,
intercept = TRUE,
conf.int = FALSE
) %>%
modify_header(
statistic = "**t-statistic**",
std.error = "**SE**"
) %>%
bold_p() %>%
add_glance_table(
include = c(r.squared, statistic)
)
,
tbl_regression(
sela_mdl3,
intercept = TRUE,
conf.int = FALSE
) %>%
modify_header(
statistic = "**t-statistic**",
std.error = "**SE**"
) %>%
bold_p() %>%
add_glance_table(
include = c(r.squared, statistic)
)
),
tab_spanner = c("M1", "M2")
) %>%
modify_table_body(~.x %>% arrange(row_type == "glance_statistic")) %>%
as_flex_table()
```
Let's check the distribution of voting to Likud across SES clusters.
```{r}
elec_more_df <- df %>%
mutate(
likud_votes = good_votes * (likud_pct / 100),
ses_2013_c = factor(ses_2013_c)
)
elec_more_df %>%
group_by(ses_2013_c) %>%
summarise(likud_pct = round(sum(likud_votes) / sum(good_votes) * 100, 1)) %>%
ggplot(aes(ses_2013_c, likud_pct)) +
geom_col() +
geom_text(
aes(label = paste0(round(likud_pct, digits = 1), "%")),
vjust = -0.5
) +
scale_y_continuous(
labels = label_percent(scale = 1),
expand = expansion(mult = c(0, 0.1))
) +
labs(
x = "\u202Bאשכול חברתי-כלכלי (2013)",
y = "\u202Bאחוז הצבעה לליכוד בבחירות 2015"
)
```
Since SES cluster 7 had special criteria, Let's look at the Likud voting patterns within them.
```{r}
ses_7_df <- elec_more_df %>%
filter(ses_2013_c == "7")
ses_7_df %>%
count(is_nat_pri, type == "מועצה אזורית" & peri_2004_c <= 2)
ses_7_df %>%
group_by(is_nat_pri) %>%
summarise(likud_pct = round(sum(likud_votes) / sum(good_votes) * 100, 1)) %>%
ggplot(aes(is_nat_pri, likud_pct)) +
geom_col() +
geom_text(
aes(label = paste0(round(likud_pct, digits = 1), "%")),
vjust = -0.5
) +
scale_y_continuous(
labels = label_percent(scale = 1),
expand = expansion(mult = c(0, 0.1))
) +
labs(
x = "אזור עדיפות לאומית",
y = "אחוז הצבעה לליכוד"
)
# by a simple mean and not total mean
ses_7_df %>%
group_by(is_nat_pri) %>%
summarise(likud_pct = round(mean(likud_pct), 1)) %>%
ggplot(aes(is_nat_pri, likud_pct)) +
geom_col() +
geom_text(
aes(label = paste0(round(likud_pct, digits = 1), "%")),
vjust = -0.5
) +
scale_y_continuous(
labels = label_percent(scale = 1),
expand = expansion(mult = c(0, 0.1))
) +
labs(
x = "אזור עדיפות לאומית",
y = "אחוז הצבעה לליכוד"
)
# by eligibility criterea for initiatives
elec_more_df %>%
filter(ses_2013_c %in% c("7", "8", "9", "10")) %>%
mutate(special_elig_init = is_nat_pri | peri_2004_c <= 2) %>%
group_by(special_elig_init) %>%
summarise(likud_pct = round(mean(likud_pct), 1)) %>%
ggplot(aes(special_elig_init, likud_pct)) +
geom_col() +
geom_text(
aes(label = paste0(round(likud_pct, digits = 1), "%")),
vjust = -0.5
) +
scale_y_continuous(
labels = label_percent(scale = 1),
expand = expansion(mult = c(0, 0.1))
) +
labs(
x = "אזור עדיפות לאומית או רשות פריפריאלית",
y = "אחוז הצבעה לליכוד"
)
```
The next thing to look at is the difference between the eligibility for SELA budget of each municipality and the hypothetical budget it would have received according to the 2014 distribution of total Ministry of Culture budget to organizations by their municipality.
## difference in hypothetical distribution modelling
### Create the difference
```{r}
sela_df <- sela_df %>%
mutate(
budget_pct_tot_2014 = budget_approved_2014 / sum(budget_approved_2014), # percent of total 2014 culture budget going to this municipality
budget_sela_hypo_2018 = sum(budget_elig_tot) * budget_pct_tot_2014, # the hypothetical SELA budget that would be going to the municipality in 2018 if the budget was distributed by the 2014 distribution
budget_sela_hypo_diff = budget_elig_tot - budget_sela_hypo_2018, # the difference between the real SELA budget eligibility of a municipality in 2018 and the hypothetical eligibility by 2014 distribution
budget_sela_hypo_diff_capita = budget_sela_hypo_diff / pop_2015
)
sela_df %>%
filter(budget_sela_hypo_diff > -500000) %>%
ggplot(aes(budget_sela_hypo_diff)) +
geom_histogram()
sela_df %>%
filter(budget_sela_hypo_diff < -500000) %>% arrange(budget_sela_hypo_diff)
sela_df %>%
ggplot(aes(budget_sela_hypo_diff_capita)) +
geom_histogram() +
geom_density(aes(y = ..count..))
sela_df %>%
filter(budget_sela_hypo_diff < -500000) %>% arrange(budget_sela_hypo_diff)
sela_df %>%
mutate(budget_sela_hypo_diff_log10 = log10(1 - min(budget_sela_hypo_diff) + budget_sela_hypo_diff)) %>%
ggplot(aes(budget_sela_hypo_diff_log10)) +
geom_histogram()
```
### Model the hypothetical difference per capita
```{r}
sela_df %>%
select(-c(name, muni_id, budget_sela_hypo_diff_capita, sa_data, contains("budget"))) %>%
map(~ lm(budget_sela_hypo_diff_capita ~ .x, data = sela_df )) %>%
map(glance) %>%
map("r.squared") %>%
as_tibble() %>%
pivot_longer(everything() ,names_to = "var", values_to = "r.squared") %>%
arrange(desc(r.squared))
lm(budget_sela_hypo_diff_capita ~ peri_2004_c + ses_2013_c + sector * coal_pct + type , data = sela_df) %>%
glance()
lm(budget_sela_hypo_diff_capita ~ peri_2004_c + ses_2013_c + sector * coal_pct + type , data = sela_df) %>%
tidy()
```
Can't model the hypothetical budget with political variables.
# Gini
```{r}
df %>%
summarise(
gini_2018 = Gini(budget_approved, weights = pop),
gini_2014 = Gini(budget_approved_2014, weights = pop)
)
```