-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinput.rb
executable file
·217 lines (193 loc) · 7.05 KB
/
input.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env ruby
require './recommender.rb'
include ItemToItem, UserToUser
module Input
$itembased_precomputed = false
$userbased_precomputed = false
Hashed_Data = true
DEBUG = false
def set_itembased_precomputed(x)
$itembased_precomputed = x
end
def set_userbased_precomputed(x)
$userbased_precomputed = x
end
def init
$average_user_rating = Array.new($number_of_users) {0}
$average_item_rating = Array.new($number_of_movies) {0}
$std_dev_user_rating = Array.new($number_of_users) {0}
$std_dev_item_rating = Array.new($number_of_movies) {0}
$rated_movies_per_user = Hash.new($number_of_users)
$normalized_rating = Hash.new()
$movies_of_user = Hash.new() {[]}
$users_of_movie = Hash.new() {[]}
$movies_similarity = Array.new($number_of_movies) {{}}
$movies_neighborhood = Array.new($number_of_movies) {[]}
$users_similarity = Array.new($number_of_users) {{}}
$users_neighborhood = Array.new($number_of_users) {[]}
end
def read_precomputed_itembased_data
File.open("Precomputed_item_data.txt", "r").each_line{ |line|
parse = line.split(" ")
if parse[0] == 'S'
movie1 = parse[1].to_i
movie2 = parse[2].to_i
$movies_similarity[movie1][movie2] = parse[3].to_f
end
}
end
def read_precomputed_userbased_data
File.open("Precomputed_user_data.txt", "r").each_line{ |line|
parse = line.split(" ")
if parse[0] == 'S'
user1 = parse[1].to_i
user2 = parse[2].to_i
$users_similarity[user1][user2] = parse[3].to_f
end
}
end
def read_ratings(infile, users_names = "users.data", movies_names = "movies.data")
lines_of_input = IO.readlines(infile)
if Hashed_Data
then
$users_hash = Hash.new
$movies_hash = Hash.new
lines_of_input.each_index { |ind|
if ind > 0
line_data = lines_of_input[ind].split(" ")
user, movie, rating = lines_of_input[ind].split(" ")
if not $users_hash.keys.include? user
$users_hash[user] = $users_hash.size + 1
end
if not $movies_hash.keys.include? movie
$movies_hash[movie] = $movies_hash.size + 1
end
lines_of_input[ind] = sprintf "%s %s %d\n", $users_hash[user], $movies_hash[movie], rating
end
}
$users_names = Hash.new
$movies_names = Hash.new
IO.readlines(users_names).each { |line|
hash, name = line.split(" ")
id = $users_hash[hash]
$users_names[id] = name
}
IO.readlines(movies_names).each { |line|
hash, name = line.split(" ")
id = $movies_hash[hash]
$movies_names[id] = name
}
end
$number_of_users = lines_of_input[0].split(" ")[0].to_i + 1
$number_of_movies = lines_of_input[0].split(" ")[1].to_i + 1
init
lines_of_input.each_index{ |line_index|
if line_index > 0
line = lines_of_input[line_index].split(" ")
user_ID = Integer(line[0])
movie_ID = Integer(line[1])
rating = Integer(line[2])
$movies_of_user[user_ID] += [movie_ID]
$users_of_movie[movie_ID] += [user_ID]
$rated_movies_per_user[[user_ID, movie_ID]] = rating
$average_item_rating[movie_ID] += rating
$average_user_rating[user_ID] += rating
$std_dev_item_rating[movie_ID] += rating * rating
$std_dev_user_rating[user_ID] += rating * rating
end
}
for i in 1...$number_of_movies
if !$users_of_movie[i].nil?
size = $users_of_movie[i].size
if size > 0
$average_item_rating[i] /= size.to_f
$std_dev_item_rating[i] /= size.to_f
$std_dev_item_rating[i] -= $average_item_rating[i] * $average_item_rating[i]
$std_dev_item_rating[i] = Math.sqrt($std_dev_item_rating[i])
end
end
end
for i in 1...$number_of_users
if !$movies_of_user[i].nil?
size = $movies_of_user[i].size
if size > 0
$average_user_rating[i] /= size.to_f
$std_dev_user_rating[i] /= size.to_f
$std_dev_user_rating[i] -= $average_user_rating[i] * $average_user_rating[i]
$std_dev_user_rating[i] = Math.sqrt($std_dev_user_rating[i])
end
end
end
$rated_movies_per_user.each {|key, value|
user = key[0]
movie = key[1]
$normalized_rating[[user, movie]] = normalize_rating($rated_movies_per_user[[user, movie]], user, movie)
}
end
def precompute_itembased(infile)
ItemToItem.offline_stage_itembased(infile)
File.open("Precomputed_item_data.txt", "w") do |out|
for movie1 in 1...$number_of_movies
$movies_similarity[movie1].each_key{ |movie2|
if Hashed_Data
then
out.printf "S %s %s %f\n", $movies_names[movie1], $movies_names[movie2], $movies_similarity[movie1][movie2]
else
out.printf "S %d %d %f\n", movie1, movie2, $movies_similarity[movie1][movie2]
end
}
end
end
$itembased_precomputed = true
if DEBUG
then
File.open("debug_similar_items.txt", "w") do |out|
for movie1 in 1...$number_of_movies
$movies_similarity[movie1].each_key { |movie2|
if $movies_similarity[movie1][movie2] > 0.99
then
common_users = $users_of_movie[movie1] | $movies_of_user[movie2]
rate1 = common_users.map {|user| get_rating(user, movie1)}
rate2 = common_users.map {|user| get_rating(user, movie2)}
com = ($users_of_movie[movie1] & $users_of_movie[movie2]).size
out.printf "sim(%d, %d) = %f, %d are common\n%d %s\n%d %s\n\n", movie1, movie2, $movies_similarity[movie1][movie2], com, movie1, rate1, movie2, rate2
end
}
end
end
end
end
def precompute_userbased(infile)
UserToUser.offline_stage_userbased(infile)
File.open("Precomputed_user_data.txt", "w") do |out|
for user1 in 1...$number_of_users
$users_similarity[user1].each_key { |user2|
if Hashed_Data
then
out.printf "S %s %s %f\n", $users_names[user1], $users_names[user2], $users_similarity[user1][user2]
else
out.printf "S %d %d %f\n", user1, user2, $users_similarity[user1][user2]
end
}
end
end
$userbased_precomputed = true
if DEBUG
then
File.open("debug_similar_users.txt", "w") do |out|
for user1 in 1...$number_of_users
$users_similarity[user1].each_key { |user2|
if $users_similarity[user1][user2] > 0.99
then
common_movies = $movies_of_user[user1] | $movies_of_user[user2]
rate1 = common_movies.map {|movie| get_rating(user1, movie)}
rate2 = common_movies.map {|movie| get_rating(user2, movie)}
com = ($movies_of_user[user1] & $movies_of_user[user2]).size
out.printf "sim(%d, %d) = %f, %d are common\n%d %s\n%d %s\n\n", user1, user2, $users_similarity[user1][user2], com, user1, rate1, user2, rate2
end
}
end
end
end
end
end