-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrecommender.rb
executable file
·144 lines (119 loc) · 4.84 KB
/
recommender.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env ruby
require "./normalizers.rb"
include Normalizer
module ItemToItem
def offline_stage_itembased(infile)
Input.read_ratings(infile)
if $itembased_precomputed
then
Input.read_precomputed_itembased_data
for movie1 in 1...$number_of_movies
$movies_similarity[movie1].each_key{ |movie2|
similarity = $movies_similarity[movie1][movie2]
if similarity > $threshold
$movies_neighborhood[movie1].push(movie2)
end
}
end
else
for movie1 in 1...$number_of_movies
similar_movies = Array.new
$users_of_movie[movie1].each {|user| similar_movies |= $movies_of_user[user]}
similar_movies = similar_movies - [movie1]
similar_movies.each{ |movie2|
common_users = $users_of_movie[movie1] & $users_of_movie[movie2]
movie1_ratings = common_users.map {|user| get_rating(user, movie1)}
movie2_ratings = common_users.map {|user| get_rating(user, movie2)}
# weights = common_users.map {|user| Math.log($number_of_movies.to_f / $movies_of_user[user].size.to_f)}
similarity = calculate_similarity(movie1_ratings, movie2_ratings)
similarity *= [$alpha, common_users.size].min / $alpha.to_f
if similarity > -EPSILON
then
$movies_similarity[movie1][movie2] = similarity
if similarity.abs > $threshold
$movies_neighborhood[movie1].push(movie2)
end
end
}
end
end
end
def online_stage_itembased(user, number_of_needed_recommendations)
recommended_movies = Array.new
$movies_of_user[user].each {|movie| recommended_movies |= $movies_neighborhood[movie]}
recommended_movies -= $movies_of_user[user]
recommended_movies.map! {|m| [expected_rating_itembased(user, m), m]}
recommended_movies.sort! {|x,y| y <=> x}
return recommended_movies[0...number_of_needed_recommendations].map {|m| m[1]}
end
def expected_rating_itembased(user, movie)
rated_movies = $movies_neighborhood[movie].keep_if {|m| not get_rating(user, m).nil?}
ratings = rated_movies.map {|m| get_rating(user, m)}
similarities = rated_movies.map {|m| $movies_similarity[movie][m]}
output_rating = compute_expected_rating(ratings, similarities)
if $normalizing_rating
then
output_rating = denormalize_rating(output_rating, user, movie)
end
#output_rating = (output_rating + 0.5).to_i
return output_rating
end
end
module UserToUser
def offline_stage_userbased(infile)
Input.read_ratings(infile)
if $userbased_precomputed
then
Input.read_precomputed_userbased_data
for user1 in 1...$number_of_users
$user_similarity[user1].each_key { |user2|
similarity = $user_similarity[user1][user2]
if similarity > $threshold
$users_neighborhood[user1].push(user2)
end
}
end
else
for user1 in 1...$number_of_users
similar_users = Array.new
$movies_of_user[user1].each { |movie| similar_users |= $users_of_movie[movie]}
similar_users -= [user1]
for user2 in similar_users
common_movies = $movies_of_user[user1] & $movies_of_user[user2]
user1_ratings = common_movies.map {|movie| get_rating(user1, movie)}
user2_ratings = common_movies.map {|movie| get_rating(user2, movie)}
# weights = common_movies.map {|movie| Math.log($number_of_users.to_f / $users_of_movie[movie].size.to_f)}
similarity = calculate_similarity(user1_ratings, user2_ratings)
similarity *= [$alpha, common_movies.size].min / $alpha.to_f
if similarity > -EPSILON
then
$users_similarity[user1][user2] = similarity
if similarity.abs > $threshold
$users_neighborhood[user1].push(user2)
end
end
end
end
end
end
def online_stage_userbased(user, number_of_needed_recommendations)
recommended_movies = Array.new
$users_neighborhood[user].each {|v| recommended_movies |= $movies_of_user[v]}
recommended_movies -= $movies_of_user[user]
recommended_movies.map! {|movie| [expected_rating_userbased(user, movie), movie]}
recommended_movies.sort! {|x,y| y <=> x}
return recommended_movies[0...number_of_needed_recommendations].map {|x| x[1]}
end
def expected_rating_userbased(user, movie)
similar_users = $users_neighborhood[user].keep_if {|v| not get_rating(v, movie).nil?}
ratings = similar_users.map {|v| get_rating(v, movie)}
similarities = similar_users.map {|v| $users_similarity[user][v]}
output_rating = compute_expected_rating(ratings, similarities)
if $normalizing_rating
then
output_rating = denormalize_rating(output_rating, user, movie)
end
#output_rating = (output_rating + 0.5).to_i
return output_rating
end
end