You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Apr 27, 2023. It is now read-only.
Hi,
In step #5, the following error occurs:
IndexError Traceback (most recent call last)
Input In [69], in <cell line: 3>()
1 # 5. Model training
2 callbacks = [ReduceLRUponNan(patience=500), ManualStop()]
----> 3 model.train_from_graphs(
4 train_graphs, train_targets, val_graphs, val_targets, epochs=EPOCHS, verbose=2, initial_epoch=0, callbacks=callbacks
5 )
File ~\anaconda3\envs\ML2\lib\site-packages\megnet\models\base.py:226, in GraphModel.train_from_graphs(self, train_graphs, train_targets, validation_graphs, validation_targets, sample_weights, epochs, batch_size, verbose, callbacks, prev_model, lr_scaling_factor, patience, save_checkpoint, automatic_correction, dirname, **kwargs)
224 train_generator = self._create_generator(*train_inputs, sample_weights=sample_weights, batch_size=batch_size)
225 steps_per_train = int(np.ceil(len(train_graphs) / batch_size))
--> 226 self.fit(
227 train_generator,
228 steps_per_epoch=steps_per_train,
229 validation_data=val_generator,
230 validation_steps=steps_per_val,
231 epochs=epochs,
232 verbose=verbose,
233 callbacks=callbacks,
234 **kwargs,
235 )
236 return self
File ~\anaconda3\envs\ML2\lib\site-packages\keras\engine\training_v1.py:855, in Model.fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
852 self._check_call_args("fit")
854 func = self._select_training_loop(x)
--> 855 return func.fit(
856 self,
857 x=x,
858 y=y,
859 batch_size=batch_size,
860 epochs=epochs,
861 verbose=verbose,
862 callbacks=callbacks,
863 validation_split=validation_split,
864 validation_data=validation_data,
865 shuffle=shuffle,
866 class_weight=class_weight,
867 sample_weight=sample_weight,
868 initial_epoch=initial_epoch,
869 steps_per_epoch=steps_per_epoch,
870 validation_steps=validation_steps,
871 validation_freq=validation_freq,
872 max_queue_size=max_queue_size,
873 workers=workers,
874 use_multiprocessing=use_multiprocessing,
875 )
File ~\anaconda3\envs\ML2\lib\site-packages\keras\engine\training_generator_v1.py:648, in GeneratorOrSequenceTrainingLoop.fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing)
644 model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x)
645 training_utils_v1.check_generator_arguments(
646 y, sample_weight, validation_split=validation_split
647 )
--> 648 return fit_generator(
649 model,
650 x,
651 steps_per_epoch=steps_per_epoch,
652 epochs=epochs,
653 verbose=verbose,
654 callbacks=callbacks,
655 validation_data=validation_data,
656 validation_steps=validation_steps,
657 validation_freq=validation_freq,
658 class_weight=class_weight,
659 max_queue_size=max_queue_size,
660 workers=workers,
661 use_multiprocessing=use_multiprocessing,
662 shuffle=shuffle,
663 initial_epoch=initial_epoch,
664 steps_name="steps_per_epoch",
665 )
File ~\anaconda3\envs\ML2\lib\site-packages\keras\engine\training_generator_v1.py:351, in model_iteration(model, data, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch, mode, batch_size, steps_name, **kwargs)
345 epoch_logs = cbks.make_logs(
346 model, epoch_logs, val_results, mode, prefix="val_"
347 )
349 if mode == ModeKeys.TRAIN:
350 # Epochs only apply to
fit
.--> 351 callbacks.on_epoch_end(epoch, epoch_logs)
353 # Recreate dataset iterator for the next epoch.
354 if reset_dataset_after_each_epoch and epoch < epochs - 1:
File ~\anaconda3\envs\ML2\lib\site-packages\keras\callbacks.py:448, in CallbackList.on_epoch_end(self, epoch, logs)
446 logs = self._process_logs(logs)
447 for callback in self.callbacks:
--> 448 callback.on_epoch_end(epoch, logs)
File ~\anaconda3\envs\ML2\lib\site-packages\megnet\callbacks.py:234, in ReduceLRUponNan.on_epoch_end(self, epoch, logs)
232 logs = logs or {}
233 loss = logs.get("loss")
--> 234 last_saved_epoch, last_metric, last_file = self._get_checkpoints()
235 if last_saved_epoch is not None:
236 if last_saved_epoch + self.patience <= epoch:
File ~\anaconda3\envs\ML2\lib\site-packages\megnet\callbacks.py:287, in ReduceLRUponNan._get_checkpoints(self)
285 epochs = []
286 for i in all_check_points:
--> 287 metrics = re.findall(file_pattern, i)[0]
288 metric_values.append(float(metrics[metric_index]))
289 epochs.append(int(metrics[epoch_index]))
IndexError: list index out of range
The text was updated successfully, but these errors were encountered: