-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtraining_utils.py
158 lines (125 loc) · 5.52 KB
/
training_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import jax
import jax.numpy as jnp
from jaxlib.xla_extension import DeviceArray
import flax
from flax.optim import dynamic_scale as dynamic_scale_lib
from flax.core import frozen_dict
from flax.training import train_state
from flax import struct
import numpy as np
from PIL import Image
from typing import Any, Callable
def sync_moving_stats(state):
"""
Sync moving statistics across devices.
Args:
state (train_state.TrainState): Training state.
Returns:
(train_state.TrainState): Updated training state.
"""
cross_replica_mean = jax.pmap(lambda x: jax.lax.pmean(x, 'x'), 'x')
return state.replace(moving_stats=cross_replica_mean(state.moving_stats))
def update_generator_ema(state_G, params_ema_G, config, ema_beta=None):
"""
Update exponentially moving average of the generator weights.
Moving stats and noise constants will be copied over.
Args:
state_G (train_state.TrainState): Generator state.
params_ema_G (frozen_dict.FrozenDict): Parameters of the ema generator.
config (Any): Config object.
ema_beta (float): Beta parameter of the ema. If None, will be computed
from 'ema_nimg' and 'batch_size'.
Returns:
(frozen_dict.FrozenDict): Updates parameters of the ema generator.
"""
def _update_ema(src, trg, beta):
for name, src_child in src.items():
if isinstance(src_child, DeviceArray):
trg[name] = src[name] + ema_beta * (trg[name] - src[name])
else:
_update_ema(src_child, trg[name], beta)
if ema_beta is None:
ema_nimg = config.ema_kimg * 1000
ema_beta = 0.5 ** (config.batch_size / max(ema_nimg, 1e-8))
params_ema_G = params_ema_G.unfreeze()
# Copy over moving stats
params_ema_G['moving_stats']['mapping_network'] = state_G.moving_stats
params_ema_G['noise_consts']['synthesis_network'] = state_G.noise_consts
# Update exponentially moving average of the trainable parameters
_update_ema(state_G.params['mapping'], params_ema_G['params']['mapping_network'], ema_beta)
_update_ema(state_G.params['synthesis'], params_ema_G['params']['synthesis_network'], ema_beta)
params_ema_G = frozen_dict.freeze(params_ema_G)
return params_ema_G
class TrainStateG(train_state.TrainState):
"""
Generator train state for a single Optax optimizer.
Attributes:
apply_mapping (Callable): Apply function of the Mapping Network.
apply_synthesis (Callable): Apply function of the Synthesis Network.
dynamic_scale (dynamic_scale_lib.DynamicScale): Dynamic loss scaling for mixed precision gradients.
epoch (int): Current epoch.
moving_stats (Any): Moving average of the latent W.
noise_consts (Any): Noise constants from synthesis layers.
"""
apply_mapping: Callable = struct.field(pytree_node=False)
apply_synthesis: Callable = struct.field(pytree_node=False)
dynamic_scale_main: dynamic_scale_lib.DynamicScale
dynamic_scale_reg: dynamic_scale_lib.DynamicScale
epoch: int
moving_stats: Any=None
noise_consts: Any=None
class TrainStateD(train_state.TrainState):
"""
Discriminator train state for a single Optax optimizer.
Attributes:
dynamic_scale (dynamic_scale_lib.DynamicScale): Dynamic loss scaling for mixed precision gradients.
epoch (int): Current epoch.
"""
dynamic_scale_main: dynamic_scale_lib.DynamicScale
dynamic_scale_reg: dynamic_scale_lib.DynamicScale
epoch: int
def get_training_snapshot(image_real, image_gen, max_num=10):
"""
Creates a snapshot of generated images and real images.
Args:
images_real (DeviceArray): Batch of real images, shape [B, H, W, C].
images_gen (DeviceArray): Batch of generated images, shape [B, H, W, C].
max_num (int): Maximum number of images used for snapshot.
Returns:
(PIL.Image): Training snapshot. Top row: generated images, bottom row: real images.
"""
if image_real.shape[0] > max_num:
image_real = image_real[:max_num]
if image_gen.shape[0] > max_num:
image_gen = image_gen[:max_num]
image_real = jnp.split(image_real, image_real.shape[0], axis=0)
image_gen = jnp.split(image_gen, image_gen.shape[0], axis=0)
image_real = [jnp.squeeze(x, axis=0) for x in image_real]
image_gen = [jnp.squeeze(x, axis=0) for x in image_gen]
image_real = jnp.concatenate(image_real, axis=1)
image_gen = jnp.concatenate(image_gen, axis=1)
image_gen = (image_gen - np.min(image_gen)) / (np.max(image_gen) - np.min(image_gen))
image_real = (image_real - np.min(image_real)) / (np.max(image_real) - np.min(image_real))
image = jnp.concatenate((image_gen, image_real), axis=0)
image = np.uint8(image * 255)
if image.shape[-1] == 1:
image = np.repeat(image, 3, axis=-1)
return Image.fromarray(image)
def get_eval_snapshot(image, max_num=10):
"""
Creates a snapshot of generated images.
Args:
image (DeviceArray): Generated images, shape [B, H, W, C].
Returns:
(PIL.Image): Eval snapshot.
"""
if image.shape[0] > max_num:
image = image[:max_num]
image = jnp.split(image, image.shape[0], axis=0)
image = [jnp.squeeze(x, axis=0) for x in image]
image = jnp.concatenate(image, axis=1)
image = (image - np.min(image)) / (np.max(image) - np.min(image))
image = np.uint8(image * 255)
if image.shape[-1] == 1:
image = np.repeat(image, 3, axis=-1)
return Image.fromarray(image)