-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsort.py
506 lines (418 loc) · 17 KB
/
sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"""
Mattia Amico
A1 - Tracking and detecting people
"""
from __future__ import print_function
from numba import jit
import os.path
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage import io
from sklearn.utils.linear_assignment_ import linear_assignment
import glob
import time
import argparse
import cv2
from filterpy.kalman import KalmanFilter
from video import generate_video_from_images
@jit
def iou(bb_test,bb_gt):
"""
Computes IUO between two bboxes in the form [x1,y1,x2,y2]
"""
xx1 = np.maximum(bb_test[0], bb_gt[0])
yy1 = np.maximum(bb_test[1], bb_gt[1])
xx2 = np.minimum(bb_test[2], bb_gt[2])
yy2 = np.minimum(bb_test[3], bb_gt[3])
w = np.maximum(0., xx2 - xx1)
h = np.maximum(0., yy2 - yy1)
wh = w * h
o = wh / ((bb_test[2]-bb_test[0])*(bb_test[3]-bb_test[1])
+ (bb_gt[2]-bb_gt[0])*(bb_gt[3]-bb_gt[1]) - wh)
return(o)
def convert_bbox_to_z(bbox):
"""
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
the aspect ratio
"""
w = bbox[2]-bbox[0]
h = bbox[3]-bbox[1]
x = bbox[0]+w/2.
y = bbox[1]+h/2.
s = w*h #scale is just area
r = w/float(h)
return np.array([x,y,s,r]).reshape((4,1))
def convert_x_to_bbox(x,score=None):
"""
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
"""
w = np.sqrt(x[2]*x[3])
h = x[2]/w
if(score==None):
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4))
else:
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5))
class KalmanBoxTracker(object):
"""
This class represents the internel state of individual tracked objects observed as bbox.
"""
count = 0
def __init__(self,bbox):
"""
Initialises a tracker using initial bounding box.
"""
#define constant velocity model
self.kf = KalmanFilter(dim_x=7, dim_z=4)
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]])
self.kf.R[2:,2:] *= 10.
self.kf.P[4:,4:] *= 1000. #give high uncertainty to the unobservable initial velocities
self.kf.P *= 10.
self.kf.Q[-1,-1] *= 0.01
self.kf.Q[4:,4:] *= 0.01
self.kf.x[:4] = convert_bbox_to_z(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
def update(self,bbox):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
self.kf.update(convert_bbox_to_z(bbox))
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if((self.kf.x[6]+self.kf.x[2])<=0):
self.kf.x[6] *= 0.0
self.kf.predict()
self.age += 1
if(self.time_since_update>0):
self.hit_streak = 0
self.time_since_update += 1
self.history.append(convert_x_to_bbox(self.kf.x))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate.
"""
return convert_x_to_bbox(self.kf.x)
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): #NB original VALUE iou_threshold = 0.3
"""
Assigns detections to tracked object (both represented as bounding boxes)
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if(len(trackers)==0):
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int)
iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32)
for d,det in enumerate(detections):
for t,trk in enumerate(trackers):
iou_matrix[d,t] = iou(det,trk)
matched_indices = linear_assignment(-iou_matrix)
unmatched_detections = []
for d,det in enumerate(detections):
if(d not in matched_indices[:,0]):
unmatched_detections.append(d)
unmatched_trackers = []
for t,trk in enumerate(trackers):
if(t not in matched_indices[:,1]):
unmatched_trackers.append(t)
#filter out matched with low IOU
matches = []
for m in matched_indices:
if(iou_matrix[m[0],m[1]]<iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1,2))
if(len(matches)==0):
matches = np.empty((0,2),dtype=int)
else:
matches = np.concatenate(matches,axis=0)
print("UNMATCHED DETECTIONS: ")
print(np.array(unmatched_detections))
print("UNMATCHED TRACKERS: ")
print(np.array(unmatched_trackers))
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class Sort(object):
def __init__(self,max_age=5,min_hits=3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.trackers = []
self.frame_count = 0
def update(self,dets):
"""
Params:
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
self.frame_count += 1
#get predicted locations from existing trackers.
trks = np.zeros((len(self.trackers),5))
to_del = []
ret = []
for t,trk in enumerate(trks):
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if(np.any(np.isnan(pos))):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks)
#update matched trackers with assigned detections
for t,trk in enumerate(self.trackers):
if(t not in unmatched_trks):
d = matched[np.where(matched[:,1]==t)[0],0]
trk.update(dets[d,:][0])
#create and initialise new trackers for unmatched detections
for i in unmatched_dets:
trk = KalmanBoxTracker(dets[i,:])
self.trackers.append(trk)
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state()[0]
if((trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits)):
ret.append(np.concatenate((d,[trk.id+1])).reshape(1,-1)) # +1 as MOT benchmark requires positive
i -= 1
#remove dead tracklet
if(trk.time_since_update > self.max_age):
self.trackers.pop(i)
if(len(ret)>0):
return np.concatenate(ret)
return np.empty((0,5))
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='detection with YOLO, tracking with SORT')
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]',action='store_true')
#parser.add_argument("-i", "--inputImagesFolder", type=str, default="images/img1" help="path to input images folder")
parser.add_argument("-d", "--outputFilesPath", type=str, default="output", help="path to detection and tracking output txt files")
parser.add_argument("-y", "--yolo", type=str, default="yolo-coco", help="base path to YOLO directory")
parser.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections")
parser.add_argument("-t", "--threshold", type=float, default=0.3, help="threshold when parserplying non-maxima suppression")
args = parser.parse_args()
return args
def generate_YOLO_detection(img_dir):
args = parse_args()
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args.yolo, "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
if(display):
if not os.path.exists('images/img1'):
print('\n\tERROR: img1 link not found!\n\n Create a symbolic link to the m1 dir\n')
exit()
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
dtype="uint8")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args.yolo, "yolov3.weights"])
configPath = os.path.sep.join([args.yolo, "yolov3.cfg"])
# load our YOLO object detector trained on COCO dataset (80 classes)
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
#img_dir = args.inputImagesFolder
data_path = os.path.join(img_dir,'*.jpg')
imagesPath = [file for file in glob.glob(data_path)]
imagesPath.sort()
#print(imagesPath)
images = [cv2.imread(file) for file in imagesPath]
total = 795
#initialize video writer and detection output file
writer = None
detectionFilePath = 'output/detection.txt'
detection_out_file = open(detectionFilePath,"w")
frameCounter = 1
for image in images:
# load our input image and grab its spatial dimensions
#image = cv2.imread(args["image"])
(H, W) = image.shape[:2]
# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# show timing information on YOLO
print("[INFO] YOLO took {:.6f} seconds".format(end - start))
# initialize our lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = [] #The detected objects class label
boxesWithConfidence = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
scores = detection[5:]
classID = np.argmax(scores)
if classID == 0:
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args.confidence:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
#(centerX, centerY, width, height) = box.astype("float")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
#boxes.append([x, y, width, height])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping bounding
# boxes keeping only the most confident ones.
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args.confidence, args.threshold)
#draw the boxes and class text on the image
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
boxWithConfidence = [boxes[i][0], boxes[i][1],boxes[i][2], boxes[i][3], confidences[i]] #TD check confidence
boxesWithConfidence.append(boxWithConfidence)
print('%d,%d,%d,%.2f,%.2f,%.4f'%(frameCounter,x,y,w,h,confidences[i]),file=detection_out_file)
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
#text: string label for detected bounding boxes
text = "{}: {:.4f}".format(LABELS[classIDs[i]] , confidences[i])
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
if writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter("output/detection.avi", fourcc, 30, (image.shape[1], image.shape[0]), True)
if total > 0:
elap = (end - start)
print("[INFO] single frame took {:.4f} seconds".format(elap))
print("[INFO] estimated total time to finish: {:.4f}".format(elap * total))
#write the output frame to disk
writer.write(image)
print("frame written")
frameCounter += 1
# release the file pointers
print("[INFO] cleaning up...")
writer.release()
detection_out_file.close()
if __name__ == '__main__':
args = parse_args()
display = args.display
total_time = 0.0
total_frames = 0
colours = np.random.rand(32,3) #used only for display
img_dir="images/img1"
if not os.path.exists('output'):
os.makedirs('output')
generate_YOLO_detection(img_dir)
if(display):
plt.ion()
fig = plt.figure()
data_path = os.path.join(img_dir,'*.jpg')
imagesPath = [file for file in glob.glob(data_path)]
imagesPath.sort()
images = [cv2.imread(file) for file in imagesPath]
total = 795
frameCounter = 1
mot_tracker = Sort() #create instance of the SORT tracker
detectionFilePath = os.path.join(args.outputFilesPath,'detection.txt')
#load YOLO detections
seq_dets = np.loadtxt(detectionFilePath,delimiter=',')
detection_file = open(detectionFilePath,'w')
print(seq_dets)
print("LEN int(seq_dets[:,0].max()): " + str(int(seq_dets[:,0].max())) )
with open(os.path.join(args.outputFilesPath,'tracking.txt'),'w') as out_file:
for frame in range(int(seq_dets[:,0].max())): #range(0,795)
frame += 1 #detection and frame numbers begin at 1
print("Processing frame " + str(frame))
#retrieve values at indexes for all detections at index==frame
dets = seq_dets[ seq_dets[:,0]==frame,1:6 ] #NB: nested list2
print("dets for frame" + str(frame) + ": ")
print(dets)
#convert [x1,y1,w,h] to [x1,y1,x2,y2] ≈ [:,:,x2,y2] = [:,:,w+x1,h+y1]
dets[:,2:4] += dets[:,0:2]
print("dets for frame, after [x1,y1,x2,y2] conversion" + str(frame) + ": ")
print(dets)
total_frames += 1
if(display):
ax1 = fig.add_subplot(111, aspect='equal')
fn = os.path.join(img_dir,'%06d.jpg'%(frame))
#fn ='images/img1/%06d.jpg'%(frame)
im =io.imread(fn)
ax1.imshow(im)
plt.title('Tracked Targets')
print("try to print")
start_time = time.time()
trackers = mot_tracker.update(dets)
cycle_time = time.time() - start_time
total_time += cycle_time
for d in trackers:
w = d[2]-d[0]
h = d[3]-d[1]
cX = d[0] + w/2
cY = d[1] + h/2
print('%d,%d,%.2f,%.2f'%(frame,d[4],cX,cY),file=out_file)
if(display):
d = d.astype(np.int32)
ax1.add_patch(patches.Rectangle((d[0],d[1]),d[2]-d[0],d[3]-d[1],fill=False,lw=2,ec=colours[d[4]%32,:]))
# x_center, y_center of tracker
ax1.add_patch(patches.Circle((cX,cY),3,fill=False,ec=colours[d[4]%32,:]))
#label: string ID for detected BBs
ax1.annotate('id = %d' % (d[4]), xy=(d[0], d[1]), xytext=(d[0], d[1]))
ax1.set_adjustable('box')
if(display):
fig.canvas.flush_events()
plt.draw()
plt.savefig("output/img_{:03}.png".format(frame))
ax1.cla()
print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time))
if(display):
print("Note: to get real runtime results run without the option: --display")
no_conf_dets = seq_dets[:,:5]
print("DETECTION LENGHT:")
print(no_conf_dets)
for det in no_conf_dets:
print('%d,%d,%d,%.2f,%.2f'%(det[0],det[1],det[2],det[3],det[4]),file=detection_file)
generate_video_from_images(args.outputFilesPath)
tmp_images_path = os.path.join(args.outputFilesPath,'*.png')
imagesToDeletePath = [file for file in glob.glob(tmp_images_path)]
for file in imagesToDeletePath:
os.remove(file)
# release the file pointers
print("[INFO] cleaning up pointers...")
detection_file.close()
out_file.close()