-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathbayesOpt.py
83 lines (71 loc) · 3.89 KB
/
bayesOpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 15 21:10:29 2020
@author: mauro
"""
from snakeClass import run
from GPyOpt.methods import BayesianOptimization
import datetime
################################################
# Set parameters for Bayesian Optimization #
################################################
class BayesianOptimizer():
def __init__(self, params):
self.params = params
def optimize_RL(self):
def optimize(inputs):
print("INPUT", inputs)
inputs = inputs[0]
# Variables to optimize
self.params["learning_rate"] = inputs[0]
lr_string = '{:.8f}'.format(self.params["learning_rate"])[2:]
self.params["first_layer_size"] = int(inputs[1])
self.params["second_layer_size"] = int(inputs[2])
self.params["third_layer_size"] = int(inputs[3])
self.params["epsilon_decay_linear"] = int(inputs[4])
self.params['name_scenario'] = 'snake_lr{}_struct{}_{}_{}_eps{}'.format(lr_string,
self.params['first_layer_size'],
self.params['second_layer_size'],
self.params['third_layer_size'],
self.params['epsilon_decay_linear'])
self.params['weights_path'] = 'weights/weights_' + self.params['name_scenario'] + '.h5'
self.params['load_weights'] = False
self.params['train'] = True
print(self.params)
score, mean, stdev = run(self.params)
print('Total score: {} Mean: {} Std dev: {}'.format(score, mean, stdev))
with open(self.params['log_path'], 'a') as f:
f.write(str(self.params['name_scenario']) + '\n')
f.write('Params: ' + str(self.params) + '\n')
return score
optim_params = [
{"name": "learning_rate", "type": "continuous", "domain": (0.00005, 0.001)},
{"name": "first_layer_size", "type": "discrete", "domain": (20,50,100,200)},
{"name": "second_layer_size", "type": "discrete", "domain": (20,50,100,200)},
{"name": "third_layer_size", "type": "discrete", "domain": (20,50,100,200)},
{"name":'epsilon_decay_linear', "type": "discrete", "domain": (self.params['episodes']*0.2,
self.params['episodes']*0.4,
self.params['episodes']*0.6,
self.params['episodes']*0.8,
self.params['episodes']*1)}
]
bayes_optimizer = BayesianOptimization(f=optimize,
domain=optim_params,
initial_design_numdata=6,
acquisition_type="EI",
exact_feval=True,
maximize=True)
bayes_optimizer.run_optimization(max_iter=20)
print('Optimized learning rate: ', bayes_optimizer.x_opt[0])
print('Optimized first layer: ', bayes_optimizer.x_opt[1])
print('Optimized second layer: ', bayes_optimizer.x_opt[2])
print('Optimized third layer: ', bayes_optimizer.x_opt[3])
print('Optimized epsilon linear decay: ', bayes_optimizer.x_opt[4])
return self.params
##################
# Main #
##################
if __name__ == '__main__':
# Define optimizer
bayesOpt = BayesianOptimizer(params)
bayesOpt.optimize_RL()