-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbinsage_proteins_scratch.py
262 lines (210 loc) · 7.4 KB
/
binsage_proteins_scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse
import os
from pathlib import Path
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, SAGEConv
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
from sage.logger import Logger
import sage.binsage as bs
import binary
import numpy as np
import wandb
class SAGE(torch.nn.Module):
def __init__(
self,
in_channels,
hidden_channels,
out_channels,
num_layers,
dropout,
binary_inputs=False,
binary_weights=False,
pseudo_quantize=False,
):
super(SAGE, self).__init__()
self.num_layers = num_layers
self.convs = torch.nn.ModuleList()
self.activs = torch.nn.ModuleList()
self.binary_inputs = binary_inputs
self.binary_weights = binary_weights
self.pseudo_quantize = pseudo_quantize
# First layer - real inputs
self.convs.append(
bs.BinSAGEConv(
in_channels,
hidden_channels,
binary_inputs=False,
binary_weights=self.binary_weights,
pseudo_quantize=False,
inner_activation=False,
center=None,
name="sageconv_00",
)
)
self.activs.append(binary.PReLU())
# Middle layers
for i in range(num_layers - 2):
self.convs.append(
bs.BinSAGEConv(
hidden_channels,
hidden_channels,
binary_inputs=self.binary_inputs,
binary_weights=self.binary_weights,
pseudo_quantize=self.pseudo_quantize,
inner_activation=False,
name=f"sageconv_{i:02d}",
)
)
self.activs.append(binary.PReLU())
# Last layer - no activation
self.convs.append(
bs.BinSAGEConv(
hidden_channels,
out_channels,
binary_inputs=self.binary_inputs,
binary_weights=self.binary_weights,
pseudo_quantize=self.pseudo_quantize,
inner_activation=False,
name=f"sageconv_{num_layers:02d}",
)
)
self.dropout = dropout
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
def forward(self, x, adj_t):
structures = []
for conv, activ in zip(self.convs[:-1], self.activs):
x = conv(x, adj_t)
x1 = activ(x)
structures.append(x1)
x = F.dropout(x1, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
return x, structures
def train(model, data, train_idx, optimizer):
model.train()
criterion = torch.nn.BCEWithLogitsLoss()
optimizer.zero_grad()
out, structures = model(data.x, data.adj_t)
# Keep only the training set
out = out[train_idx]
structures = [ss[train_idx] for ss in structures]
loss = criterion(out, data.y[train_idx].to(torch.float))
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data, split_idx, evaluator):
model.eval()
y_pred, _ = model(data.x, data.adj_t)
train_rocauc = evaluator.eval(
{
"y_true": data.y[split_idx["train"]],
"y_pred": y_pred[split_idx["train"]],
}
)["rocauc"]
valid_rocauc = evaluator.eval(
{
"y_true": data.y[split_idx["valid"]],
"y_pred": y_pred[split_idx["valid"]],
}
)["rocauc"]
test_rocauc = evaluator.eval(
{
"y_true": data.y[split_idx["test"]],
"y_pred": y_pred[split_idx["test"]],
}
)["rocauc"]
return train_rocauc, valid_rocauc, test_rocauc
def main():
parser = argparse.ArgumentParser(
description="OGBN-Proteins (GNN) with BinSAGE from scratch"
)
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--log_steps", type=int, default=1)
parser.add_argument("--num_layers", type=int, default=3)
parser.add_argument("--hidden_channels", type=int, default=256)
parser.add_argument("--dropout", type=float, default=0.0)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--epochs", type=int, default=1000)
parser.add_argument("--eval_steps", type=int, default=5)
parser.add_argument("--runs", type=int, default=10)
parser.add_argument(
"--exp_name",
type=str,
default="binsage_scratch",
metavar="N",
help="Name of the experiment",
)
args = parser.parse_args()
print(args)
wandb.init("binary_gnn_demo")
wandb.config.update(args)
wandb.config.dataset = "ogbn_proteins"
wandb.config.distill = False
device = f"cuda:{args.device}" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
dataset = PygNodePropPredDataset(
name="ogbn-proteins", root="./sage/data", transform=T.ToSparseTensor()
)
data = dataset[0]
# Move edge features to node features.
data.x = data.adj_t.mean(dim=1)
data.adj_t.set_value_(None)
split_idx = dataset.get_idx_split()
train_idx = split_idx["train"].to(device)
print("Using BinSAGE")
model = SAGE(
data.num_features,
args.hidden_channels,
112,
args.num_layers,
args.dropout,
binary_inputs=True,
binary_weights=True,
pseudo_quantize=False,
).to(device)
data = data.to(device)
# Watch model
wandb.watch(model, log="all", log_freq=50)
evaluator = Evaluator(name="ogbn-proteins")
logger = Logger(args.runs, args)
for run in range(args.runs):
OUTPUT_DIR = f"./sage/out/proteins/{args.exp_name}/run_{run}"
Path(OUTPUT_DIR).mkdir(parents=True, exist_ok=True)
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
for epoch in range(1, 1 + args.epochs):
loss = train(model, data, train_idx, optimizer)
wandb.log({"run": run + 1, "epoch": epoch, "training_loss": loss})
if epoch % args.eval_steps == 0:
result = test(model, data, split_idx, evaluator)
logger.add_result(run, result)
train_rocauc, valid_rocauc, test_rocauc = result
wandb.log(
{
"run": run + 1,
"epoch": epoch,
"train": train_rocauc,
"valid": valid_rocauc,
"test": test_rocauc,
}
)
if epoch % args.log_steps == 0:
print(
f"Run: {run + 1:02d}, "
f"Epoch: {epoch:02d}, "
f"Loss: {loss:.4f}, "
f"Train: {100 * train_rocauc:.2f}%, "
f"Valid: {100 * valid_rocauc:.2f}% "
f"Test: {100 * test_rocauc:.2f}%"
)
logger.print_statistics(run)
out_name = f"binsage_proteins_scratch_run_{run:02d}.pt"
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, out_name))
wandb.save(os.path.join(OUTPUT_DIR, out_name))
logger.print_statistics()
if __name__ == "__main__":
main()