-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCM_BL6523GX.cpp
467 lines (384 loc) · 10.2 KB
/
MCM_BL6523GX.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/*
* BL6523GX Energy Meter IC Support for Arduino
* Author: Christopher Mendez | @mcmchris
* Date: 22/10/2024
*/
#include <Arduino.h>
#include "MCM_BL6523GX.h"
#define BL_Serial Serial0
#define BL6523GX_DEBUG 1
#if BL6523GX_DEBUG
#define DBG(...) \
{ \
Serial.println(__VA_ARGS__); \
}
#define ERR(...) \
{ \
Serial.println(__VA_ARGS__); \
}
#else
#define DBG(...)
#define ERR(...)
#endif /* BL6523GX_DBG */
bool BL6523GX::begin(uint32_t baud_rate, uint8_t rxPin, uint8_t txPin)
{
/* For M5STACK_PAPER */
// Serial2.begin(4800, SERIAL_8N1, 18, 19);
BL_Serial.begin(baud_rate, SERIAL_8N1, rxPin, txPin);
delay(500);
return true;
}
uint8_t BL6523GX::_culcCheckSum(uint8_t *txData, int txLenght, uint8_t *rxData, int rxLenght) {
uint8_t checksum = 0;
for (int i = 1; i < txLenght; i++) {
checksum += txData[i];
}
for (int i = 0; i < rxLenght; i++) {
checksum += rxData[i];
}
checksum = ~checksum;
return checksum;
}
bool BL6523GX::_writeRegister(uint8_t address, uint32_t data) {
//read buffer clear
while (BL_Serial.available() != 0) {
BL_Serial.read();
}
//Register Unlock
uint8_t unlockTxData[6] = { 0xCA, 0x3E, 0x55, 0, 0, 0 };
unlockTxData[5] = _culcCheckSum(unlockTxData, sizeof(unlockTxData) - 1, 0, 0);
BL_Serial.write(unlockTxData, sizeof(unlockTxData));
//Write Register
uint8_t txData[6] = { 0xCA, address, (uint8_t)(data), (uint8_t)(data >> 8), (uint8_t)(data >> 16) };
//uint8_t txData[6] = { 0xCA, address, (uint8_t)(data >> 16), (uint8_t)(data >> 8), (uint8_t)(data) };
txData[5] = _culcCheckSum(txData, sizeof(txData) - 1, 0, 0);
BL_Serial.write(txData, sizeof(txData));
return true;
}
bool BL6523GX::_readRegister(uint8_t address, uint32_t *data) {
uint8_t txData[] = { 0x35, address };
BL_Serial.write(txData, sizeof(txData));
uint8_t rxData[4] = { 0, 0, 0, 0 };
uint32_t startTime = millis();
while (BL_Serial.available() != sizeof(rxData)) {
delay(10);
if ((millis() - startTime) > timeout)
break;
}
int rxDataLength = BL_Serial.readBytes(rxData, sizeof(rxData));
if (rxDataLength == 0) {
ERR("Serial Timeout.");
return false;
}
uint8_t checksum = _culcCheckSum(txData, sizeof(txData), rxData, sizeof(rxData) - 1);
if (rxData[3] != checksum) {
char message[128];
sprintf(message, "Checksum error true:%x read:%x.", checksum, rxData[3]);
ERR(message);
return false;
}
*data = ((uint32_t)rxData[2] << 16) | ((uint32_t)rxData[1] << 8) | (uint32_t)rxData[0];
return true;
}
bool BL6523GX::Reset() {
if (false == _writeRegister(0x3F, 0x5A5A5A)) {
ERR("Can not write SOFT_RESET register.");
return false;
}
while (BL_Serial.available() != 0) {
BL_Serial.read();
}
delay(500);
return true;
}
bool BL6523GX::setCFOutputMode(uint16_t cf_div) {
if (false == _writeRegister(0x19, cf_div)) {
ERR("Can not write WA_CFDIV register.");
return false;
}
while (BL_Serial.available() != 0) {
BL_Serial.read();
}
delay(500);
return true;
}
bool BL6523GX::setCal(uint16_t V_CAL, uint16_t I_CAL, uint16_t P_CAL){
_V_CAL = V_CAL;
_I_CAL = I_CAL;
_P_CAL = P_CAL;
}
bool BL6523GX::setGain(int V_GAIN , int IB_GAIN, int IA_GAIN) {
uint32_t gain_data = intToGain(V_GAIN) << 8 | intToGain(IB_GAIN) << 4 | intToGain(IA_GAIN);
Serial.println(gain_data, BIN);
if (false == _writeRegister(0x15, gain_data)) { //Voltage Gain, Current B Gain, Current A Gain
ERR("Can not write GAIN register.");
return false;
}
while (BL_Serial.available() != 0) {
BL_Serial.read();
}
delay(500);
return true;
}
bool BL6523GX::getVoltage(float *voltage) {
uint32_t data;
if (false == _readRegister(0x07, &data)) {
ERR("Can not read V_RMS register.");
return false;
}
*voltage = (float)data / _V_CAL; //50387.1788455; // 5731.66529943 / 50641.219513
return true;
}
bool BL6523GX::getCurrent(float *currentA, float *currentB) {
uint32_t dataA;
if (false == _readRegister(0x05, &dataA)) {
ERR("Can not read IA_RMS register.");
return false;
}
*currentA = (float)dataA / _I_CAL; // 55559.025609
uint32_t dataB;
if (false == _readRegister(0x06, &dataB)) {
ERR("Can not read IB_RMS register.");
return false;
}
*currentB = (float)dataB / _I_CAL; // 55559.025609
return true;
}
bool BL6523GX::getFrequency(float *freq) {
uint32_t data;
if (false == _readRegister(0x09, &data)) {
ERR("Can not read FREQ register.");
return false;
}
*freq = (87.3906 * 3579545.0) / (32.0*(float)data); // 87.3906 * osc_freq : constants defined by datasheet
return true;
}
bool BL6523GX::getActivePower(float *powerA, float *powerB) {
uint32_t dataA;
if (false == _readRegister(0x0A, &dataA)) {
ERR("Can not read POWER_A register.");
return false;
}
if ((float)dataA >= pow(2, 23)) {
*powerA = ((float)dataA - pow(2, 24)) / _P_CAL; //481.462140704;
} else {
*powerA = (float)dataA / _P_CAL; //481.462140704;
}
uint32_t dataB;
if (false == _readRegister(0x13, &dataB)) {
ERR("Can not read POWER_B register.");
return false;
}
if ((float)dataB >= pow(2, 23)) {
*powerB = ((float)dataB - pow(2, 24)) / _P_CAL; //481.462140704;
} else {
*powerB = (float)dataB / _P_CAL; //481.462140704;
}
return true;
}
bool BL6523GX::getAparentPower(float *apower) {
uint32_t data;
if (false == _readRegister(0x0B, &data)) {
ERR("Can not read VA register.");
return false;
}
if ((float)data >= pow(2, 23)) {
*apower = ((float)data - pow(2, 24)) / _P_CAL; //481.462140704;
} else {
*apower = (float)data / _P_CAL; //481.462140704;
}
return true;
}
bool BL6523GX::getCFCount(float *cf_count) {
uint32_t data;
if (false == _readRegister(0x0C, &data)) {
ERR("Can not read WATTHR register.");
return false;
}
float div;
getCFOutputMode(&div);
*cf_count = (float)data; //*(1000.0/(2062.0*(div/4.0)));
return true;
}
bool BL6523GX::getActiveEnergy( float *activeEnergy ) {
uint32_t data;
if (false == _readRegister(0x0D, &data)) {
ERR("Can not read VAHR register.");
return false;
}
*activeEnergy = (float)data; // / 481.462140704
return true;
}
bool BL6523GX::getLineWattHr(float *l_watt_hr) {
uint32_t data;
if (false == _readRegister(0x04, &data)) {
ERR("Can not read LINE_WATTHR register.");
return false;
}
*l_watt_hr = (float)data;
return true;
}
bool BL6523GX::setLinecyc() {
if (false == _writeRegister(0x31, 0x001)) {
ERR("Can not write LINECCC register.");
return false;
}
while (BL_Serial.available() != 0) {
BL_Serial.read();
}
delay(500);
return true;
}
bool BL6523GX::getLinecyc(float *linecyc) {
uint32_t data;
if (false == _readRegister(0x31, &data)) {
ERR("Can not read LINECYC register.");
return false;
}
*linecyc = (float)data;
return true;
}
bool BL6523GX::getPowerFactor(float *pf) {
uint32_t data;
if (false == _readRegister(0x08, &data)) {
ERR("Can not read FREQ register.");
return false;
}
bool pf_bit = data >> 23; // PF signed bit
if (pf_bit) { // positive
*pf = ((float)data - pow(2, 24)) / pow(2, 23);
} else { // negative
*pf = (float)data / pow(2, 23);
}
return true;
}
/*
Energy Channel Selection
ch = 0: the CF register will measure energy on channel A
ch = 1: the CF register will measure energy on channel B
CF Accumulation Setup
cf_mode = 0: absolute energy count
cf_mode = 1: positive energy count
cf_mode = 2: arithmetical energy count
cf_mode = 3: negative energy count
Control CF output
dis_out = 0: CF enabled
dis_out = 1: CF disabled
Energy Register Accumulation
energy_math = 0: algebraic sum accumulation
energy_math = 1: absolute accumulation
*/
bool BL6523GX::setMode(bool ch, uint8_t cf_mode, bool dis_out, bool energy_math) {
uint32_t mode_data = energy_math << 21 | dis_out << 17 | cf_mode << 8 | ch;
//Serial.println(mode_data, BIN);
if (false == _writeRegister(0x14, mode_data)) { // first bit define which channel to CF respond to 0 = A, 1 = B
ERR("Can not write MODE register.");
return false;
}
while (BL_Serial.available() != 0) {
BL_Serial.read();
}
delay(500);
return true;
}
bool BL6523GX::getCFOutputMode(float *div) {
uint32_t data;
if (false == _readRegister(0x19, &data)) {
ERR("Can not read WA_CFDIV register.");
return false;
}
*div = (uint32_t)data;
return true;
}
uint8_t BL6523GX::intToGain(uint8_t gain)
{
uint8_t data;
if (gain <= 32)
{
switch (gain)
{
case 1:
data = 0b0000;
break;
case 2:
data = 0b0001;
break;
case 4:
data = 0b0010;
break;
case 8:
data = 0b0011;
break;
case 16:
data = 0b0100;
break;
case 24:
data = 0b0101;
break;
case 32:
data = 0b0110;
break;
default:
Serial.println("Gain out of range!");
data = 0b0000;
}
}
return data;
}
bool BL6523GX::getMode(uint32_t *mode) {
uint32_t data;
if (false == _readRegister(0x14, &data)) {
ERR("Can not read MODE register.");
return false;
}
*mode = (uint32_t)data;
return true;
}
/*******************************************************************/
/*
bool getGain(uint32_t *gain) {
uint32_t data;
if (false == _readRegister(0x15, &data)) {
ERR("Can not read GAIN register.");
return false;
}
*gain = data;
return true;
}
bool getCF(uint32_t *cf) {
uint32_t data;
if (false == _readRegister(0x19, &data)) {
ERR("Can not read WA_CFDIV register.");
return false;
}
*cf = (uint32_t)data;
return true;
}
bool getMode(uint32_t *mode) {
uint32_t data;
if (false == _readRegister(0x14, &data)) {
ERR("Can not read MODE register.");
return false;
}
*mode = (uint32_t)data;
return true;
}
bool setMode() {
if (false == _writeRegister(0x14, 0x5A5A5A)) {
ERR("Can not write SOFT_RESET register.");
return false;
}
while (BL_Serial.available() != 0) {
BL_Serial.read();
}
delay(500);
return true;
}
void ReverseArray(uint8_t arr[], int size) {
for (int i = 0; i < size / 2; i++) {
int temp = arr[i];
arr[i] = arr[size - 1 - i];
arr[size - 1 - i] = temp;
}
}
*/