Skip to content

Latest commit

 

History

History
410 lines (316 loc) · 12.6 KB

README.md

File metadata and controls

410 lines (316 loc) · 12.6 KB

MOSFET Characterization in Python

Motivation

This tool has the following goals:

  1. Provide an easy way of creating plots of MOSFET parameters, such as those used in the gm/ID design methodology.

  2. Provide a tool that does not depend on any proprietary software or require licensing fees.

  3. Open source so that it can be easily modified/extended by the user.

Installation

Requirements

This tools is written in Python and requires the following:

  • Numpy, Scipy, and Matplotlib for data analysis and plotting.

  • ngspice or hspice for generating the lookup table.

Installation

  • Clone this repository: git clone https://github.com/medwatt/gmid.git.

  • Inside the directory, invoke: pip install ..

Generating a Lookup Table

Before any plots can be made, a lookup table of all the relevant parameters must first be created. This is done by instantiating an object from the LookupTableGenerator and then building the table with the build method. An example is given below.

from mosplot import LookupTableGenerator

obj = LookupTableGenerator(
    description="freepdk 45nm ngspice",
    simulator="ngspice",
    simulator_path="/usr/bin/ngspice", # optional
    model_paths=[
        "/home/username/gmid/models/NMOS_VTH.lib",
        "/home/username/gmid/models/PMOS_VTH.lib",
        ],
    model_names={
        "nmos": "NMOS_VTH",
        "pmos": "PMOS_VTH",
    },
    vsb=(0, 1.0, 0.1),
    vgs=(0, 1.0, 0.01),
    vds=(0, 1.0, 0.01),
    width=10e-6,
    lengths=[50e-9, 100e-9, 200e-9, 400e-9, 800e-9, 1.6e-6, 3.2e-6, 6.4e-6],
)
obj.build("/home/username/gmid/lookup_tables/freepdk_45nm_ngspice.npy")

A summary of some of the parameters is given below:

  • The simulator used is specified with the simulator parameter. At the moment, only ngspice and hspice are supported. If you're using windows or some linux distribution where ngspice and hspice are named differently, you will have to pass the full path to the binary to the simulator_path variable.

  • The lookup_table will be generated for a specific transistor model. Provide the location of the model files as a list using the model_paths parameter. Since it is possible to have more than one model definition inside a file, you need to specify the model name. This is done via the model_names parameter, where the keys are always "nmos" and "pmos and their values are the names of the models to be used.

  • If there's a specific need to pass in some custom SPICE commands, these should be done via the raw_spice parameter (not shown in the example above).

  • To generate a lookup table, the bulk, gate, and drain voltages relative to the source have to be swept over a range of voltages. Specify the range in the form (start, stop, step). The smaller the step size, the bigger is the size of the lookup table.

  • The lengths can be provided as a list of discrete values or a 1-dimensional numpy array.

  • Only a single width should be provided. The assumption here is that the parameters of the MOSFET scale linearly with the width. Because of this assumption, all parameters that are width-dependent must be de-normalized with respect to the current or width that you're working with.

  • The directory where the generated lookup table is saved is passed directly to the build method.

Using the Tool

Because of the interactive nature of designing analog circuits, using this script within a jupyter notebook is highly recommended.

Imports

We begin by making the following imports:

import numpy as np
from mosplot import load_lookup_table, LoadMosfet

The load_lookup_table function loads a lookup table such as the one generated in the previous section.

lookup_table = load_lookup_table("path/to/lookup-table.npy")

The LoadMosfet class contains methods that can be used to generate plots seamlessly. If you plan to modify the style of the plots or plot things differently, you will also have to import matplotlib.

import matplotlib.pyplot as plt
plt.style.use('path/to/style')

Making Simple Plots

We start by creating an object called nmos that selects the NMOS from the lookup table and sets the source-bulk and drain-source voltages to some fixed values. Since the data is 4-dimensional, it is necessary to fix two of the variables at a time to enable 2-dimensional plotting.

nmos = LoadMosfet(lookup_table=lookup_table, mos="nmos", vsb=0.0, vds=0.5, vgs=(0.3, 1))

The above code filters the table at vsb=0.0 and vds=0.5 for all lengths and for vgs values between (0.3, 1). You can also include a step such as (0.3, 1, 0.02). If you want all values of vgs, either set it to None or don't include it.

Methods are available to create the most commonly-used plots in the gm/ID methodology so that you don't have to type them. These are:

  • current_density_plot(): this plots $I_{D}/W$ vs $g_{m}/I_{D}$.
  • gain_plot(): this plots $g_m / g_{ds}$ vs $g_{m}/I_{D}$.
  • transit_frequency_plot(): this plots $f_{T}$ vs $g_{m}/I_{D}$.
  • early_voltage_plot(): this plots $V_{A}$, vs $g_{m}/I_{D}$.

For example, the plot of $I_{D}/W$ vs $g_{m}/I_{D}$ is shown below.

nmos.current_density_plot()

current density plot

When the lookup table includes a lot of lengths, the plot can become crowded. You can pass a list of lengths to plot with the length parameter.

Use nmos.lengths to get a list of all the lengths in the lookup table.

array([5.0e-08, 1.0e-07, 2.0e-07, 4.0e-07, 8.0e-07, 1.6e-06, 3.2e-06,
       6.4e-06])

Pass a filtered list to the current_density_plot method.

nmos.current_density_plot(
    lengths = [5.0e-08, 1.0e-07, 2.0e-07]
)

current density plot

Note that the tool does its best to determine how to scale the axes. For example, in the last plot, a log scale was chosen for the y-axis. We can easily overwrite that, as well as other things.

nmos.current_density_plot(
    lengths = [5.0e-08, 1.0e-07, 2.0e-07],
    y_scale = 'linear',
    x_limit = (5, 20),
    y_limit = (0, 300),
    save_fig="path/to/save/figure/with/extension"
)

current density plot

Plotting by Expression

Now, suppose we want to plot something completely custom. The example below shows how.

nmos.plot_by_expression(
    x_expression = nmos.vgs_expression,
    y_expression = {
        "variables": ["id", "gds"],
        "function": lambda x, y: x / y,
        "label": "$I_D / g_{ds} (A/S)$"
        },
)

custom expression

For this example, we want $V_{\mathrm{GS}}$ on the x-axis. Since $V_{\mathrm{GS}}$ is such a commonly-used expression, it is already defined in the code. Other commonly-used expressions are also defined, such as:

  • gmid_expression
  • vgs_expression
  • vds_expression
  • vsb_expression
  • gain_expression
  • current_density_expression
  • transist_frequency_expression
  • early_voltage_expression

For the y-axis, we want a custom expression that uses the parameters $I_D$ and $g_{\mathrm{ds}}$. This can be done by defining a dictionary that specifies the variables needed and how to calculate the required parameter. The label field is optional. The function field is also optional if we want to just plot the parameter, as shown in the example below.

nmos.plot_by_expression(
    x_expression = nmos.vgs_expression,
    # y_expression = nmos.id_expression, ## same as below
    y_expression = {
        "variables": ["id"],
        "label": "$I_D (A)$"
        }
)

custom expression

Looking Up Values

While having plots is a good way to visualize trends, we might also just be interested in the raw value.

gain expression

Looking at the figure above, it's hard to read the exact value on the y-axis for a particular value on the x-axis, especially more so when the scale is logarithmic. Also, what if we need to read the value for a length that is not defined in our lookup table?

There are two ways to go about this:

  • Zoom in and click on the plot. This prints out the x and y coordinates. Note, in jupyter notebooks, you need to execute %matplotlib widget or %matplotlib qt to interact with the plot.

  • Use a lookup method to get a more precise value.

Lookup Using Interpolation

The snippet below shows how we can lookup the gain given the length and gmid. The returned value is calculated using interpolation from the available data. The accuracy of the result depends on how far the points are from those defined in the table.

x = nmos.interpolate(
    x_expression=nmos.lengths_expression,
    x_value=100e-9,
    y_expression=nmos.gmid_expression,
    y_value=15,
    z_expression=nmos.gain_expression,
)

The above code evaluates the gain at a single point. Suppose we want to know the gmid or length for which 0.08 <= vdsat < 0.12 and 1e6 <= gds < 4e-6. The snippet below shows how.

x = nmos.interpolate(
    x_expression=nmos.vdsat_expression,
    x_value=(0.08, 0.12, 0.01),
    y_expression=nmos.gds_expression,
    y_value=(1e-6, 4e-6, 1e-6),
    z_expression=nmos.gmid_expression,
    # z_expression=nmos.length_expression,
)
       # 1e-6
array([[17.95041245, 17.89435802, 17.47526426], # 0.08
       [16.87609489, 16.76595338, 16.53927928],
       [14.77585736, 15.09803158, 14.9483348 ],
       [14.12540234, 14.05481451, 14.04265227]])

Lookup By Expression

lookup_expression_from_table() simply looks up an expression from the table. It doesn't use any interpolation. So, make sure that the values you are looking up are present in the table.

x = nmos.lookup_expression_from_table(
    lengths=100e-9,
    vsb=0,
    vds=(0.0, 1, 0.01),
    vgs=(0.0, 1.01, 0.2),
    primary="vds",
    expression=nmos.current_density_expression,
)

Plotting Methods

Plot by Sweep

The plot_by_sweep method is extremely flexible and can be used to create all sorts of plots. For example, the snippet below shows how to plot the traditional output characteristic plot of a MOSFET.

nmos.plot_by_sweep(
    lengths=180e-9,
    vsb = 0,
    vds = (0.0, 1, 0.01), # you can also set to `None`
    vgs = (0.0, 1.01, 0.2),
    x_expression_expression = nmos.vds_expression,
    y_expression_expression = nmos.id_expression,
    primary = "vds",
    x_eng_format=True,
    y_eng_format=True,
    y_scale='linear',
)

output characteristic

Quick Plot

Let's say we want to see how $V_{\mathrm{DS}{\mathrm{SAT}}}$ (the drain-source voltage required to enter saturation) compares with $V{\mathrm{OV}}$ and $V^{\star} = \frac{2}{g_m / I_D}$ in a single plot. We can generate each of these plots individually, as we did before, but ask the method to return the plot data so that we can combine them in a single plot. Note that you can also use lookup_expression_from_table() to return the required data if you don't want to see the plot.

vdsat = nmos.plot_by_expression(
    lengths=[45e-9],
    x_expression = nmos.vgs_expression,
    y_expression = nmos.vdsat_expression,
    return_result = True,
)

vov = nmos.plot_by_expression(
    lengths=[45e-9],
    x_expression = nmos.vgs_expression,
    y_expression = {
        "variables": ["vgs", "vth"],
        "function": lambda x, y: x - y,
        },
    return_result = True,
)

vstar = nmos.plot_by_expression(
    lengths=[45e-9],
    x_expression = nmos.vgs_expression,
    y_expression = {
        "variables": ["gm", "id"],
        "function": lambda x, y: 2 / (x/y),
        },
    return_result=True,
)

The result is returned in a tuple in the form (x_data, y_data). We can then make any custom plot using matplotlib. Nevertheless, there's a method called quick_plot() that formats the plot in the same way as the generated plots. quick_plot() accepts numpy arrays, or a list of x and y values, as shown in the example below.

nmos.quick_plot(
    x = [vdsat[0], vstar[0], vov[0]],
    y = [vdsat[1], vstar[1], vov[1]],
    legend = ["$V_{\\mathrm{DS}_{\\mathrm{SAT}}}$", "$V^{\\star}$", "$V_{\\mathrm{OV}}$"],
    x_limit = (0.1, 1),
    y_limit = (0, 0.6),
    x_label = "$V_{\\mathrm{GS}}$",
    y_label = "$V$",
)

qucik plot

Acknowledgment

  • Parsing the output from hspice is done using this script.

  • If you find this tool useful, it would be nice if you cite it.